Mostrar el registro sencillo del ítem

dc.contributor.advisorCoronado Vaca, Maríaes-ES
dc.contributor.authorVivas Redondo, Maríaes-ES
dc.contributor.otherUniversidad Pontificia Comillas, Facultad de Ciencias Económicas y Empresarialeses_ES
dc.date.accessioned2023-06-12T20:02:40Z
dc.date.available2023-06-12T20:02:40Z
dc.date.issued2024es_ES
dc.identifier.urihttp://hdl.handle.net/11531/78806
dc.descriptionGrado en Análisis de Negocios/Business Analytics y Grado en Derechoes_ES
dc.description.abstractEste trabajo se centra en explorar el potencial de distintos algoritmos de Machine Learning de Aprendizaje Supervisado en la valoración de opciones americanas, contrastándolos con el modelo Longstaff-Schwartz. Para llevar a cabo esta investigación, se emplean en RStudio los algoritmos KNN (K-Nearest Neighbors), RF (Random Forest), MLP (Multi-Layer Perceptron) y CNN (Convolutional Neural Network). El estudio se enfoca específicamente en la predicción del precio de opciones americanas put de Apple mediante regresión, utilizando datos extraídos de Bloomberg como caso de estudio. Aunque los resultados muestran mejoras en la precisión de las predicciones, evidenciadas por un RMSE (Root Mean Squared Error) inferior al obtenido con el modelo Longstaff-Schwartz, aún persisten áreas de oportunidad para perfeccionar la precisión de las predicciones y abordar posibles sesgos o limitaciones en los modelos. Estos hallazgos subrayan la importancia de seguir investigando y perfeccionando los enfoques de valoración de opciones americanas para mejorar la toma de decisiones financieras y mitigar los riesgos en los mercados financieros.es-ES
dc.description.abstractThis project focuses on exploring the potential of different Machine Learning Supervised Learning algorithms in the valuation of American options, contrasting them with the Longstaff-Schwartz model. To carry out this research, the algorithms KNN (K-Nearest Neighbors), RF (Random Forest), MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) are employed using RStudio. The project specifically targets the prediction of the price of Apple’s put American options through regression, utilizing data extracted from Bloomberg as a case study. Although the results demonstrate improvements in prediction accuracy, evidenced by a lower RMSE (Root Mean Squared Error) compared to the Longstaff-Schwartz model, there are still areas for improvement to enhance predictions precision and address potential biases or limitations in the models. These findings underscore the importance of continuing researching and refining approaches to American options valuation in order to enhance financial decision-making and mitigate risks in financial markets.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoes-ESes_ES
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/es_ES
dc.subject.otherKBAes_ES
dc.titleOPTIMIZACIÓN DE LA VALORACIÓN DE OPCIONES AMERICANAS CON MACHINE LEARNING: MÁS ALLÁ DE LONGSTAFF-SCHWARTZ Y MODELOS HÍBRIDOSes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordsOpciones americanas, Machine Learning, Aprendizaje Supervisado, Regresión, Longstaff-Schwartz, KNN (K-Nearest Neighbors), RF (Random Forest), MLP (Multi-Layer Perceptron), CNN (Convolutional Neural Network), RMSE (Root Mean Squared Error).es-ES
dc.keywordsAmerican options, Machine Learning, Supervised Learning, Regression, Longstaff-Schwartz, KNN (K-Nearest Neighbors), RF (Random Forest), MLP (Multi-Layer Perceptron), CNN (Convolutional Neural Network), RMSE (Root Mean Squared Error).en-GB


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 United States
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 United States