Mostrar el registro sencillo del ítem

dc.contributor.authorNafees Muneera, M.es-ES
dc.contributor.authorAnbu Selvi, G.es-ES
dc.contributor.authorVaissnave, V.es-ES
dc.contributor.authorRajora, GopaL Lales-ES
dc.date.accessioned2024-02-23T13:17:27Z
dc.date.available2024-02-23T13:17:27Z
dc.date.issued2023-12-08es_ES
dc.identifier.issn2074-9090es_ES
dc.identifier.urihttps:doi.org10.5815ijcnis.2023.06.04es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractCloud computing's popularity and success are directly related to improvements in the use of Information and Communication Technologies (ICT). The adoption of cloud implementation and services has become crucial due to security and privacy concerns raised by outsourcing data and business applications to the cloud or a third party. To protect the confidentiality and security of cloud networks, a variety of Intrusion Detection System (IDS) frameworks have been developed in the conventional works. However, the main issues with the current works are their lengthy nature, difficulty in intrusion detection, over-fitting, high error rate, and false alarm rates. As a result, the proposed study attempts to create a compact IDS architecture based on cryptography for cloud security. Here, the balanced and normalized dataset is produced using the z-score preprocessing procedure. The best attributes for enhancing intrusion detection accuracy are then selected using an Intelligent Adorn Dragonfly Optimization (IADO). In addition, the trained features are used to classify the normal and attacking data using an Intermittent Deep Neural Network (IDNN) classification model. Finally, the Searchable Encryption (SE) mechanism is applied to ensure the security of cloud data against intruders. In this study, a thorough analysis has been conducted utilizing various parameters to validate the intrusion detection performance of the proposed I2ADO-DNN model.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: International Journal of Computer Network and Information Security, Periodo: 1, Volumen: online, Número: 6, Página inicial: 40, Página final: 51es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleA cryptographic based I2ADO-DNN security framework for intrusion detection in cloud systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsCloud Computing, Security, Intrusion Detection System (IDS), Z-Score Normalization, Intelligent Adorn Dragonfly Optimization (IADO), Intermittent Deep Neural Network (IDNN) Classification, and Searchable Encryptionen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem