• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid model based on LSTM neural networks with attention mechanism for short-term wind power forecasting

Thumbnail
Ver/
IIT-23-352R.pdf (2.682Mb)
Fecha
2023-08-21
Autor
Marulanda García, Geovanny Alberto
Cifuentes Quintero, Jenny Alexandra
Bello Morales, Antonio
Reneses Guillén, Javier
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Wind power plants have gained prominence in recent decades owing to their positive environmental and economic impact. However, the unpredictability of wind resources poses significant challenges to the secure and stable operation of the power grid. To address this challenge, numerous computational and statistical methods have been proposed in the literature to forecast short-term wind power generation. However, the demand for more accurate and reliable methodologies to tackle this problem remains. In this context, this paper proposes a new hybrid framework that combines a statistical pre-processing stage with an attention-based deep learning approach to overcome the shortcomings of existing forecasting strategies in accurately predicting multi-seasonal wind power time series. The proposed ensemble model involves a data transformation stage that normalizes the data distribution, along with modeling and removing multiple seasonal patterns from the historical time-series. Considering these results, the proposed model further incorporates an LSTM Recurrent Neural Network (RNN) model with an attention mechanism, for each month of the year, to better capture the relevant temporal dependencies in the input residuals sequence. The model was trained and evaluated on hourly wind power data obtained from the Spanish electricity market, spanning the period from 2008 to 2019. Experimental results show that the proposed model outperforms well-established DL-based models, achieving lower error metrics. These findings have potential applications in energy trading, grid planning, and renewable energy management.
 
URI
https:doi.org10.11770309524X231191163
A hybrid model based on LSTM neural networks with attention mechanism for short-term wind power forecasting
Tipo de Actividad
Artículos en revistas
ISSN
0309-524X
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Long short term memory, deep learning, wind power forecasting, attention mechanisms, time series decomposition
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias