• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive models to optimize resources in tele critical care in distributed hospital networks

Thumbnail
Ver/
Predictive%20models%20to%20optimize%20resources%20in%20tele%20critical%20care%20in%20distributed%20hospital%20networks (4.464Mb)
Fecha
2023-02-09
Autor
Palacios Hielscher, Rafael
Sánchez Ubeda, Eugenio Francisco
Panos, Ralph J.
Argaw?, ?Peniel
Shahrawat, Malika
Zhang, Daniel D.
Zhang, Angelina
Seiver, Adam
Badawi, Omar
Gupta, Amar
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Background: Telemedicine creates the opportunity – in pandemic conditions and otherwise -- to spread health care to regions where intensivists and health services may not beavailable. It offers the opportunity to provide better patient care, decrease healthcare costs, and overall improve population health. Introduction: Critical care telemedicine has increased in deployment due to its impact on providing care at all times of the day as well as in reaching remote regions of the world. Tele-critical care (Tele-CC) systems can provide concurrent service to several hospitals andcan manage available resources more efficiently than traditional ICUs. Materials and Methods: This study utilizes the Philips eICU system and its CollaborativeResearch Database (eICU-CRD) to evaluate intensive care operations in the electronic ICU setting, with the objective of analyzing where and how system engineering techniques can bepotentially applied to enhance the effectiveness of such environments. Results: Several metrics are evaluated, including patient outcomes, APACHE score, length of stay and type of unit in regard to the age of the patient. Prediction models based on decision and regression trees are presented to estimate mortality and length of stay. Discussion: Prediction models offer the potential to optimize the Tele-CC environment by helping to estimate the number of patients who will remain in the ICU during the following days. Conclusion: Prediction models accurately estimate mortality and length of stay in ICU. The estimation of future number of patients can be used to determine the resources needed at each hospital, as well as to provide insight on potential savings when Tele-CC centers provide concurrent services to multiple hospitals.
 
URI
https:doi.org10.30953thmt.v8.408
Predictive models to optimize resources in tele critical care in distributed hospital networks
Tipo de Actividad
Artículos en revistas
ISSN
2471-6960
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

eICU, eICU collaborative research database, electronic ICU, intensive care, length of stay prediction, mortality prediction, resource management, tele-critical care, telemedicine
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias