• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept

Thumbnail
View/Open
A%20collaborative%20network%20of%20digital%20twins%20for%20anomaly%20detection%20applications%20of%20complex%20systems.%20Snitch%20Digital%20Twin%20concept (4.486Mb)
Date
2023-01-01
Author
Calvo Báscones, Pablo
Voisin, Alexandre
Do, Phuc
Sanz Bobi, Miguel Ángel
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT) ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes a new concept of DT focused on modeling connections between physical behaviors. This new DT concept is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and support the detection of anomalies between them. The behavior of each physical entity is characterized by three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the robustness of the proposed methodology is assessed by comparing it with the other two commonly used algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines (OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology compared to the two traditional algorithms.
 
URI
https:doi.org10.1016j.compind.2022.103767
A collaborative network of digital twins for anomaly detection applications of complex systems. Snitch Digital Twin concept
Tipo de Actividad
Artículos en revistas
ISSN
0166-3615
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Anomaly detection; Digital Twins; Behavior characterization; Quantile regression; Diesel generator
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback