Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez Quispe, Erik Franciscoes-ES
dc.contributor.authorLópez Amezquita, Juan Camiloes-ES
dc.contributor.authorOlmos Camacho, Luises-ES
dc.contributor.authorRamos Galán, Andréses-ES
dc.date.accessioned2024-05-31T10:19:37Z
dc.date.available2024-05-31T10:19:37Z
dc.date.issued2024-09-01es_ES
dc.identifier.issn2352-4677es_ES
dc.identifier.urihttps:doi.org10.1016j.segan.2024.101413es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractThis paper presents a novel mixed-integer linear optimization formulation of the AC network-constrained, cost-based, integrated expansion planning problem. The formulation is used to determine the investment needs per technology including the location and sizing of new generation, energy storage, and transmission network assets in a future low-carbon power system. To reduce the size of the resulting problem, the AC optimal power flow (AC-OPF) model is represented in a compact way using cycle constraints. A bound tightening procedure is also considered to reduce the search space and improve the solver performance by adjusting the voltage bounds within the AC-OPF. Contrary to typically used formulations of the integrated expansion planning problem, the constraints considered here include all main aspects of system operation, namely unit commitment, energy storage system management, AC-OPF, and reactive power compensation. Thus, in this paper, we examine how both the proposed transmission expansion modeling developments and the interrelation of the integrated planning constraints affect the computation of the solution to the expansion planning problem. The performance of this formulation is assessed on the RTS-GMLC test system by computing the expansion plan and comparing it with the results of three other expansion planning formulations most frequently employed in the recent literature to address the integrated expansion planning problem for medium to large-scale systems. Expansion plans are computed and compared for different case studies and multiple scenarios. According to the comparative analysis, neglecting the AC-OPF or the unit commitment constraints can increase the total system costs by 7.10–9.57 or 6.29–8.39, respectively. Unlike other modeling approaches, the proposed approach does not rely on simplifications that impact the quality of the solution. Thanks to the incorporated cycle-based AC-OPF constraints and the consideration of a bound tightening procedure, the computation time is reduced by 17.67–27.21.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceRevista: Sustainable Energy, Grids and Networks, Periodo: 1, Volumen: online, Número: , Página inicial: 101413-1, Página final: 101413-16es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAn optimal expansion planning of power systems considering cycle-based AC optimal power flowes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsAC optimal power flow; Cycle constraints; Low-carbon emissions; Power system expansion planning; Unit commitmenten-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem