Mostrar el registro sencillo del ítem

dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.date.accessioned2024-06-26T09:48:15Z
dc.date.available2024-06-26T09:48:15Z
dc.date.issued2024-06-05es_ES
dc.identifier.issn2079-9292es_ES
dc.identifier.urihttps://doi.org/10.3390/electronics13112208es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractIn this paper, we present a novel approach to state estimation in dynamic systems by combining Physics-Informed Neural Networks (PINNs) with an adaptive Unscented Kalman Filter (UKF). Recognizing the limitations of traditional state estimation methods, we refine the PINN architecture with hybrid loss functions and Monte Carlo Dropout for enhanced uncertainty estimation. The Unscented Kalman Filter is augmented with an adaptive noise covariance mechanism and incorporates model parameters into the state vector to improve adaptability. We further validate this hybrid framework by integrating the enhanced PINN with the UKF for a seamless state prediction pipeline, demonstrating significant improvements in accuracy and robustness. Our experimental results show a marked enhancement in state estimation fidelity for both position and velocity tracking, supported by uncertainty quantification via Bayesian inference and Monte Carlo Dropout. We further extend the simulation and present evaluations on a double pendulum system and state estimation on a quadcopter drone. This comprehensive solution is poised to advance the state-of-the-art in dynamic system estimation, providing unparalleled performance across control theory, machine learning, and numerical optimization domains.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Electronics, Periodo: 1, Volumen: 13, Número: 11, Página inicial: 2208, Página final: .es_ES
dc.titleHybrid State Estimation: Integrating Physics-Informed Neural Networks with Adaptive UKF for Dynamic Systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsPhysics-Informed Neural Networks; Unscented Kalman Filter (UKF); state estimationen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España