dc.contributor.author | Srinivasan, Anitha | es-ES |
dc.contributor.author | Ares Gastesi, Pablo | es-ES |
dc.date.accessioned | 2024-08-30T07:37:21Z | |
dc.date.available | 2024-08-30T07:37:21Z | |
dc.date.issued | 2018-01-01 | es_ES |
dc.identifier.issn | 0017-095X | es_ES |
dc.identifier.uri | https://doi.org/10.3336/gm.53.1.01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/92651 | |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | . | es-ES |
dc.description.abstract | For n ≥ 1, the n
th Ramanujan prime is defined as the smallest
positive integer Rn such that for all x ≥ Rn, the interval ( x
2
, x] has
at least n primes. We show that for every > 0, there is a positive
integer N such that if α = 2n
1 +
log 2 +
log n + j(n)
, then Rn < p[α]
for
all n > N, where pi
is the i
th prime and j(n) > 0 is any function that
satisfies j(n) → ∞ and nj0
(n) → 0 | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
dc.source | Revista: Glasnik Matematicki, Periodo: 1, Volumen: , Número: 1, Página inicial: 1, Página final: 7 | es_ES |
dc.title | New upper bounds for ramanujan primes | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | . | es-ES |
dc.keywords | 11A41; 11N05 | en-GB |