Mostrar el registro sencillo del ítem

dc.contributor.authorSanz Bobi, Miguel Ángeles-ES
dc.contributor.authorOrbach, Sarahes-ES
dc.contributor.authorBellido López, Francisco Javieres-ES
dc.contributor.authorMuñoz San Roque, Antonioes-ES
dc.contributor.authorGonzález Calvo, Danieles-ES
dc.contributor.authorÁlvarez Tejedor, Tomáses-ES
dc.date.accessioned2025-03-04T18:07:47Z
dc.date.available2025-03-04T18:07:47Z
dc.date.issued2024-06-27es_ES
dc.identifier.urihttp://hdl.handle.net/11531/97765
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThis paper aims to explore the use of recent approaches of deep learning techniques for anomaly detection of potential failure modes in a cooling water pump working in a gas-combined cycle in a power plant. Two different deep learning techniques have been tested: neural networks and reinforcement learning. Two virtual digital twins were developed with each family of deep learning techniques, able to simulate the behavior of the cooling water pump in the absence of pump failure modes. Each virtual digital twin consists of several models for predicting the expected evolution of significant behavior variables when no anomalies exist. Examples of these variables are bearing temperatures or vibrations in different pump locations. All the data used comes from the SCADA system. The main features and hyperparameters in the virtual digital twins are presented, and demonstration examples are included.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherPrognostics and Health Management Society (Praga, República Checa)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 8th European Conference of the Prognostics and Health Management Society - PHME24, Página inicial: 187-195, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleAnomaly detection of a cooling water pump of a power plant based on its virtual digital twin constructed with deep learning techniqueses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsDeep learning, reinforcement learning, anomaly detection, digital twinen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem