Mostrar el registro sencillo del ítem
On advancements and challenges in asset management for HVDC systems: a machine learning perspective
dc.contributor.author | Rajora, GopaL Lal | es-ES |
dc.contributor.author | Bertling Tjemberg, Lina | es-ES |
dc.contributor.author | Sanz Bobi, Miguel Ángel | es-ES |
dc.date.accessioned | 2025-03-04T18:07:59Z | |
dc.date.available | 2025-03-04T18:07:59Z | |
dc.date.issued | 2024-09-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/97767 | |
dc.description | Capítulos en libros | es_ES |
dc.description.abstract | es-ES | |
dc.description.abstract | In the context of global climate goals and the transition to sustainable energy, modern energy transportation and distribution systems play a crucial role. Electricity transportation and distribution systems would not function without power lines. One of the most challenges facing global power cable asset managers is efficiently managing the enormous and costly network of cables; most are getting closer or beyond their intended lifespan. Since HVDC systems are more economical and technically superior to HVAC systems for transmission over long distances, they have become increasingly important in the Power system. HVDC is preferred across 300–800 km for cable-based hookups and direct transmission schemes. This study aims to conduct a review study of the asset management strategies used for HVDC systems. Also, it explores the challenges and most recent advancements in asset management systems incorporating machine learning. Then, several machine learning algorithms used in recent studies are examined for asset management in power system applications. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.publisher | Auckland University of Technology; IEEE New Zealand North Section (Auckland, Nueva Zelanda) | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.source | Libro: 18th International Conference on Probabilistic Methods Applied to Power Systems - PMAPS 2024, Página inicial: 1-6, Página final: | es_ES |
dc.subject.other | Instituto de Investigación Tecnológica (IIT) | es_ES |
dc.title | On advancements and challenges in asset management for HVDC systems: a machine learning perspective | es_ES |
dc.type | info:eu-repo/semantics/bookPart | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Power Systems, High Voltage Direct Current (HVDC), Artificial Intelligence (AI), Machine Learning, Asset Management, and Power Transmission System. | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos
Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.