Mostrar el registro sencillo del ítem

dc.contributor.authorFioriti, Davidees-ES
dc.contributor.authorPoli, Davidees-ES
dc.contributor.authorDueñas Martínez, Pabloes-ES
dc.contributor.authorMicangeli, Andreaes-ES
dc.date.accessioned2025-03-04T18:13:22Z
dc.date.available2025-03-04T18:13:22Z
dc.date.issued2022-09-28es_ES
dc.identifier.urihttp://hdl.handle.net/11531/97789
dc.descriptionCapítulos en libroses_ES
dc.description.abstractes-ES
dc.description.abstractThe sizing of off-grid systems in developing countries can be very challenging and rarely mathematical modelling techniques are able to account for their multifaceted nature, even when using multi-objective optimization to capture economic, social and environmental aspects. To overcome that, developers perform sensitivity analyses to test whether different configurations, here denoted as Multiple Design Options (MDOs), may lead to acceptable economic performances, yet slightly more costly than the theoretical mathematical optimum. In this study, we propose a methodology to provide developers with a manageable number of design options that map the design space close to the Pareto frontier. First, we employ MDO - Multi Objective Particle Swarm Optimization (MDOMOPSO) algorithm to identify the Pareto frontier with respect to Net Present Cost and CAPEX. Then, all the explored configurations in the nearby of the Pareto frontier are stored, and a novel clustering methodology, namely Peripheral Mapping by Receding Nearest Neighbor (PM-RNN), based on hierarchical clustering, is used to reduce the selected space to a handy number of MDOs. The proposed approach is compared to the standard k-means to highlight benefits of the proposed method. Results of a numerical case study regarding a Kenyan hybrid minigrid support the findings.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.publisherEindhoven University of Technology (Eindhoven, España)es_ES
dc.rightses_ES
dc.rights.uries_ES
dc.sourceLibro: 5th International Conference on Smart Energy Systems and Technologies - SEST 2022, Página inicial: 1-6, Página final:es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleClustering approaches to select Multiple Design Options in multi-objective optimization: an application to rural microgridses_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsHierarchical clustering and kmeans; Modelling to Generate Alternatives (MGA); Modelling All Alternatives (MAA); Rural electrification; solution poolen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem