Mostrar el registro sencillo del ítem

dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.date.accessioned2025-03-26T15:30:57Z
dc.date.available2025-03-26T15:30:57Z
dc.date.issued2025-03-07es_ES
dc.identifier.issn2075-4698es_ES
dc.identifier.urihttps://doi.org/10.3390/soc15030065es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractTraditional classifications of global development, such as the developed/developing dichotomy or Global North/South, often oversimplify the intricate landscape of human development. This paper leverages computational tools, advanced visualization techniques, and mathematical modeling to challenge these conventional categories and reveal a continuous development spectrum among nations. By applying hierarchical clustering, multidimensional scaling, and interactive visualizations to Human Development Index (HDI) data, we identify “development neighborhoods”—clusters of countries that exhibit similar development patterns, sometimes across geographical boundaries. Our methodology combines network theory, statistical physics, and digital humanities approaches to model development as a continuous field, introducing novel metrics for development potential and regional inequality. Through analysis of HDI data from 193 countries (1990–2022), we demonstrate significant regional variations in development trajectories, with Africa showing the highest mean change rate (28.36%) despite maintaining the lowest mean HDI (0.557). The implementation of circle packing and radial dendrogram visualizations reveals both population dynamics and development continuums, while our mathematical framework provides rigorous quantification of development distances and cluster stability. This approach not only uncovers sophisticated developmental progressions but also emphasizes the importance of continuous frameworks over categorical divisions. The findings highlight how digital humanities tools can enhance our understanding of global development, providing policymakers with insights that traditional methods might overlook. Our methodology demonstrates the potential of computational social science to offer more granular analyses of development, supporting policies that recognize the diversity within regional and developmental clusters, while our mathematical framework provides a foundation for future quantitative studies in development economics.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Societies, Periodo: 1, Volumen: 15, Número: 3, 65, Página inicial: 1, Página final: 26es_ES
dc.titleUsing Digital Tools to Understand Global Development Continuumses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsdigital humanities; Human Development Index; hierarchical clustering; development continuum; visualization; computational social scienceen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España