Mostrar el registro sencillo del ítem

dc.contributor.authorde Curtò i Díaz, Joaquimes-ES
dc.contributor.authorde Zarzà i Cubero, Irenees-ES
dc.date.accessioned2025-04-08T08:22:04Z
dc.date.available2025-04-08T08:22:04Z
dc.date.issued2025-03-05es_ES
dc.identifier.issn2169-3536es_ES
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3548451es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractThis paper presents a novel approach to fostering cooperative behavior in multi-agent systems (MAS) through Large Language Model (LLM)-driven social influence. We propose a theoretical framework where agents’ decision-making processes are influenced not through direct action but by subtle, narrativedriven influences disseminated by LLMs. These influences guide agents toward cooperative behaviors, such as rural repopulation, without requiring explicit policy interventions. We introduce a formal model grounded in game theory and social network dynamics, where agents balance the direct benefits of action with the indirect payoffs of LLM-guided influence. Using NASH equilibrium and Evolutionarily Stable Strategies (ESS), we demonstrate how cooperative behaviors emerge even when agents remain inactive but are subtly influenced by LLMs. Our experimental simulations validate the model, showing a strong positive correlation between network centrality and influence propagation (r = 0.969, p < 0.006). Furthermore, temporal analysis reveals that the average influence increases from approximately 0.05–0.06 in the initial steps to 0.08–0.09 in later stages, indicating a cumulative and self-sustaining trend. In addition, the influence values exhibit a near-normal distribution (Shapiro–Wilk test, p = 0.285) and yield a large effect size (Cohen’s d = 4.530) when comparing agents with high versus low network centrality. Through visualization techniques and statistical metrics, we demonstrate the effectiveness of the proposed framework and identify promising directions for future research in AI-driven social influence. This study highlights the potential of LLM-driven narratives as a cost-effective, scalable alternative to traditional policy interventions, offering a new paradigm for promoting societal cooperation in areas such as rural repopulation, sustainability, and community development.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: IEEE Access, Periodo: 1, Volumen: 13, Número: , Página inicial: 44330, Página final: 44342es_ES
dc.titleLLM-Driven Social Influence for Cooperative Behavior in Multi-Agent Systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsMulti-agent systems, large language models, social influence, game theory, NASH equilibrium, rural repopulationen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España