Mostrar el registro sencillo del ítem
Fine-tuning transformer models for M&A target prediction in the U.S. energy sector
dc.contributor.author | Rodríguez-Muñoz de Baena, Inés | es-ES |
dc.contributor.author | Coronado Vaca, María | es-ES |
dc.contributor.author | Vaquero Lafuente, Esther | es-ES |
dc.date.accessioned | 2025-04-10T06:25:17Z | |
dc.date.available | 2025-04-10T06:25:17Z | |
dc.date.issued | 2025-04-09 | es_ES |
dc.identifier.issn | 2331-1975 | es_ES |
dc.identifier.uri | https://doi.org/10.1080/23311975.2025.2487219 | es_ES |
dc.identifier.uri | http://hdl.handle.net/11531/98482 | |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | . | es-ES |
dc.description.abstract | This study explores the application of transformer models directly for classification in predicting mergers and acquisitions (M&A) targets within the U.S. energy sector. The primary objective is to evaluate the capability and performance of various transformer-based models in directly predicting M&A target companies, while the secondary objective investigates the relationship between target companies and renewable energy terminology in their annual reports. We present a novel approach to predicting M&A targets by utilizing cutting-edge Natural Language Processing (NLP) techniques, such as fine-tuned transformer LLMs (Large Language Models) for direct classification. We analyze textual data from 200 publicly-listed US energy companies’ SEC-filings and employ FinBERT, ALBERT, and GPT-3-babage-002 as predictive models of M&A targets. We provide empirical evidence on LLMs’ capability in the direct classification of M&A target companies, with FinBERT utilizing oversampling, being the top-performing model due to its high precision and minimized false positives, critical for precise financial decision-making. Additionally, while the study revealed key differences in target and non-target report characteristics, it finds no significant evidence that M&A target companies use more renewable energy-related terminology. It is the first paper applying fine-tuned transformer-LLMs to predict M&A targets, effectively showcasing their capability for this task of direct classification as predictive models. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
dc.source | Revista: Cogent Business & Management, Periodo: 1, Volumen: 12, Número: 1, 2487219, Página inicial: 1, Página final: 28 | es_ES |
dc.title | Fine-tuning transformer models for M&A target prediction in the U.S. energy sector | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | . | es-ES |
dc.keywords | Mergers and acquisitions(M&a); renewable energy;takeover targetprediction; green M&a;natural languageprocessing (nlP);transformer models; largelanguage models (llM) | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos
Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.