Mostrar el registro sencillo del ítem

dc.contributor.authorCastro Corredor, Davides-ES
dc.contributor.authorCalvo Pascual, Luis Ángeles-ES
dc.contributor.authorLópez Medina, Clementinaes-ES
dc.date.accessioned2025-05-16T11:18:43Z
dc.date.available2025-05-16T11:18:43Z
dc.date.issued2025-05-14es_ES
dc.identifier.issn1759-7218es_ES
dc.identifier.urihttps://doi.org/10.1177/1759720X251332224es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractBackground: The effectiveness of anti-tumour necrosis factor (TNF) therapy in spondyloarthritis is traditionally associated with factors such as age, obesity and disease subtypes. However, less-explored aspects, such as mental health, socioeconomic status and work type may also play a crucial role in determining inflammatory activity and therapeutic response. Objectives: To identify the most significant factors explaining inflammatory activity levels in patients treated with anti-TNF therapy and to develop an interpretable machine-learning model with good performance and minimal overfitting. Design: This is an observational, cross-sectional and multicentre study with socio-demographical and clinical data extracted from the Registry of Spondyloarthritis of Spanish Rheumatology (REGISPONSER) and Ibero-American Registry of Spondyloarthropathies (RESPONDIA) registries. Methods: We selected patients receiving anti-TNF therapy and applied five feature selection methods to identify key factors. We evaluated these factors using 182 machine learning models, and, finally, we selected a decision tree model that offered comparable performance with reduced overfitting. Results: Activity levels appear strongly influenced by quality-of-life indicators, particularly the SF-12 physical and mental components and Ankylosing Spondylitis Quality of Life scores. While factors such as age, weight, years of treatment and age at diagnosis have relevance, they are not necessary to obtain a pruned tree with similar cross-validated mean accuracy. Conclusion: Recognizing the central role of physical and mental well-being in managing disease activity can lead to better therapeutic strategies for chronic disease management.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoes-ESes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Therapeutic Advances in Musculoskeletal Disease, Periodo: 1, Volumen: 17, Número: , Página inicial: ., Página final: .es_ES
dc.titleInflammatory activity levels on patients with anti-TNF therapy: most important factors and a decision tree model based on REGISPONSER and RESPONDIA registrieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsanti-TNF therapy, cross-validated mean accuracy, machine learning, mutual information, rheumatic diseasesen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España