Mostrar el registro sencillo del ítem
Phase-field model with concentrating-potential terms on the boundary
dc.contributor.author | Jiménez Casas, Ángela | es-ES |
dc.date.accessioned | 2025-06-05T11:54:01Z | |
dc.date.available | 2025-06-05T11:54:01Z | |
dc.date.issued | 2025-02-01 | es_ES |
dc.identifier.issn | 2590-0374 | es_ES |
dc.identifier.uri | https://doi.org/10.1016/j.rinam.2024.100523 | es_ES |
dc.description | Artículos en revistas | es_ES |
dc.description.abstract | . | es-ES |
dc.description.abstract | In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of , the boundary of domain. The neighborhood shrinks to as a parameter approaches zero. We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | Creative Commons Reconocimiento-NoComercial-SinObraDerivada España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | es_ES |
dc.source | Revista: Results in applied mathematics, Periodo: 1, Volumen: 25, Número: , Página inicial: 100523, Página final: . | es_ES |
dc.title | Phase-field model with concentrating-potential terms on the boundary | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | . | es-ES |
dc.keywords | Parabolic equationsTransmission problemSingular limit Concentrating terms | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos
Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.