• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing item-level fit for the sequential G-DINA model

Thumbnail
Ver/
20256239921771_2025 - Behaviormetrika - Najera et .pdf (2.855Mb)
Fecha
2025-06-14
Autor
Nájera Álvarez, Pablo
Ma, Wenchao
Sorrel Luján, Miguel Ángel
Abad, Francisco J.
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
.
 
Cognitive Diagnostic Models (CDMs) categorize examinees into latent classes with distinct profiles of attribute mastery based on their responses to the test items. Most of these models have traditionally focused on dichotomous responses (i.e., correct vs. incorrect) from multiple-choice items. The sequential process model (SPM) extends the applicability of CDM by modeling sequentially graded responses that stem from different item formats (e.g., constructed-response items). The SPM is flexible enough to accommodate a different response function for each category, which can also measure a distinct set of attributes. Empirical Q-matrix validation and category-level model selection have been already proposed for the SPM, which help identify the best specification for each category. However, absolute item-level fit has not been addressed for the SPM yet, preventing from determining whether such specifications are appropriate. The present study adapts three well-known item-fit statistics to the SPM and evaluates their performance through a simulation study. The results show that the statistics are usually conservative, but have an adequate power at detecting relevant misspecifications (i.e., those that provoke a substantial disruption in item parameter estimation). Practical implications and recommendations are provided.
 
URI
https://doi.org/10.1007/s41237-025-00263-8
http://hdl.handle.net/11531/99676
Assessing item-level fit for the sequential G-DINA model
Tipo de Actividad
Artículos en revistas
ISSN
0385-7417
Palabras Clave
.
Cognitive diagnosis modeling · Graded responses · Item fit · Absolute fit · Sequential process model
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias