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Resumen 

 

El mercado spot es una parte fundamental del suministro eléctrico. Un modelo del mercado spot 

alemán fue desarrollado para poder simular su comportamiento y pronosticar el 

comportamiento de los precios. Los datos utilizados por el modelo son las centrales térmicas e 

hidroeléctricas, la generación de energías renovables y la demanda. La generación de las 

centrales térmicas e hidroeléctricas se modela con agentes mientras que la demanda y la 

generación de las renovables se modela con una serie temporal fija. Los resultados de las 

simulaciones se comparan con los precios históricos de 2014 para evaluar la precisión del 

modelo. 

El objetivo de este trabajo es mejorar el modelo para conseguir precios más similares a los 

históricos. Para ello, se modificó el modelo de la no disponibilidad de las centrales térmicas. La 

no disponibilidad era generada anteriormente con un método estocástico asumiendo valores 

medios mensuales para cada tecnología. Este modelo se sustituyó por la no disponibilidad 

histórica de cada central. Solo se utilizó la disponibilidad prevista porque el análisis se centra en 

el mercado diario. 

Las diferencias entre ambos modelos tienen efecto en los resultados de las simulaciones. El 

nuevo modelo tiene una variación mensual mayor que el modelo estocástico. Los parones son 

más frecuentes en los meses con menor demanda y precios. El nuevo modelo también tiene un 

valor medio anual ligeramente superior. 
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Aunque la no disponibilidad es más alta en el nuevo modelo, la media de los precios simulados 

es menor. Esto es provocado por la diferente distribución mensual de la no disponibilidad, el 

efecto en los meses con mayores precios es mayor que en los meses con menores precios por 

la variación de la pendiente de la curva de ofertas. La pendiente es menor en la zona con 

menores precios y mayor en la zona con mayores precios. El nuevo modelo aproxima mejor los 

precios medios y los de valle mientras que el modelo antiguo simula mejor los precios pico. 

 

El nuevo modelo replica mejor la curva de duración que el antiguo. Reduce el número de precios 

muy altos y se aproxima mejor en los precios bajos (de la hora 6000 a la 8760). Los precios 

negativos no pueden ser simulados aún, es necesario incluir más limitaciones en el modelo de 

las centrales térmicas.   
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En el ámbito semanal, el nuevo modelo no mejora significativamente. La mayor mejora se 

observa en los domingos. 

 

Una regresión multivariante se llevó a cabo para estimar hasta qué punto depende el precio de 

la no disponibilidad y de los otros factores del modelo. El efecto de la no disponibilidad es 

significativo, aunque sea menor que el de la demanda y la generación de renovables, y podría 

ser útil para prever precios en el futuro. 
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Abstract 

The spot market is a part of great importance in the electricity supply chain. In order to simulate its 

behavior and to be able to forecast future prices a model of the German spot market was developed. 

The data used are the thermal and hydraulic power plants, renewable energies generation and the 

load. The generation of thermal and hydraulic power plants is modeled with agents while the load 

and the renewable energies are modeled with a fixed time series. The results of the simulations are 

compared with the historic prices of 2014 to evaluate the accuracy of the model. 

The objective of this work is to improve the model to get prices more similar to the historic. The 

model for the unavailability of thermal power plants was changed in order to achieve this. The 

unavailability was generated previously with a stochastic method with assumed average values, and 

it was substituted with the historic per unit unavailability. Only the planned unavailability was used 

because the analysis will focus on the day ahead market. 

There are some differences between the data of both models which had an effect on the market 

prices. The new model has a higher monthly variation than the stochastic model, with the highest 

values concentrated in the months with lowest load and prices. The new model also has a slightly 

higher average unavailability during the year. 

Even though the unavailability was higher in the new model, the prices were lower on average. This 

could be explained by the monthly distribution of unavailability, its effect in the months with higher 

prices more than offsetting the effect in the months with lower prices because of the characteristics 

of the merit order curve. The new model approximates better both the base and off peak prices 

while the peak prices were better previously. The new model fits better the duration curve than the 

old model. It reduced the number of price spikes, and is closer to the historic prices in the lower part 

of the curve (from the hour 6000 to the 8760). Negative prices still cannot be simulated, further 

changes in the thermal power plant model will be needed. On a weekly basis, the new model 

performs better on Sundays while during the rest of the week it is similar to the stochastic model. 

A multivariate regression was done to estimate the impact of the unavailability and the other factors 

of our model on the prices. The effect of the unavailability, while lower than that of the load and the 

renewable energies is significant and could be useful to predict future prices.  
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1 Introduction 

1.1 Background und Motivation 

The electricity markets were liberalized in Germany in 1998. The previously vertically integrated 

monopolistic sector was unbundled and competition was introduced. Transparent competitive 

markets were created, where the generation companies could sell freely their production and the 

distribution companies bought the electricity they needed to supply the end consumers. Competition 

was introduced in every step of the electricity supply chain except in the operation of the network[1]. 

While most of the electricity is supplied in bilateral derivative contracts, the power exchanges are 

gaining importance. Two markets were created to enable the electricity supply, the spot market and 

the reserve market[2]. 

The spot market is handled in two exchanges, European Energy Exchange (EEX) in Leipzig and 

European Power Exchange (EPEX) in Paris. The spot market is divided in two parts, the Day Ahead 

Market and the Intraday Market. In both sections energy can be bought or sold, the difference being 

the time until the delivery and the differences in the price formation. The day ahead market uses the 

market clearing price, where all the orders are fulfilled at the same price after an auction is done. In 

the intraday market the pay as you bid method is used. The seller receives the price it offered as long 

as the bid is accepted[2].  

The reserve market is organized by the system operators in order to ensure the stability of the 

system when there are accidents in the power plants or for balancing forecast deviations in demand 

or intermittent supply. The reserve capacity is sold by the generation companies and bought by the 

system operators. Three types of reserve exist, called primary, secondary and tertiary reserve. They 

are determined by their time to activate and the time they can be required to operate. The reserve 

markets are not completely open, the participating firms need to fulfill several requirements like 

minimum power offered and minimum activation times. This encourages the bidders to do strategic 

bidding, trying to get the price of the bid as close as possible to the highest accepted bid[3]. 

The European electricity markets are becoming increasingly interconnected. Interconnection will 

help reduce the need for reserves and the electricity price in the coming years. It is also a good way 

of integrating the renewable energies that different countries generate. Germany had in 2012 

21.3 GW of interconnection capacity and it is increasing every year, but on average only half of the 



transmission capacity is used. Germany is a net energy exporter, the biggest buyers of German 

electricity are Austria and the Netherlands while the biggest sellers to Germany are the Czech 

Republic and France. In 2014 Germany’s net sales were 35 TWh[4].  

1.2 Objective of the research 

The objective of this thesis is to model the behavior of the electricity markets in Germany. A model of 

the electricity market can be used as a tool to forecast the impact of possible developments in the 

future on the energy markets. Analyzing the impact of an increase of generation by renewable 

energy sources is an example of the possible uses the model could have. 

The data used by the model is mainly the thermal and hydraulic power plants, the renewable 

energies generation and the load. The generation by thermal and hydraulic power plants is modeled 

with agents while the load and the renewable energies are introduced using historical data. The 

results of the model will be compared with the historical data of 2014 in order to evaluate the 

accuracy of the model. The objective of this work is to find areas where the model could be improved 

in order to better approximate the historic prices. 

In Chapter 2 the main data that is used by the model is analyzed as well as different possibilities on 

how the model could be improved. Chapter 3 explains the changes in the model performed in this 

work and compares their differences. In Chapter 4 the results of the simulations using the new model 

are compared to the previous model and the historic prices.  
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2 Analysis 

2.1 Renewable energies 

The renewable energy share of Germany’s electricity production has grown from 6.3% in the year 

2000 to 32.5% of the gross consumption in 2015 supplying 194 TWh. The targets specified by the 

Renewable Energies Law (EEG) is to have 40-45% by 2025 and 55-60% by 2035[4]. The importance of 

renewable energies in the German electricity market has grown sharply since the turn of the century. 

Renewable energies power plants, solar and wind in particular, are quite different compared to 

conventional power plants. Because of this, we will analyze their particularities in order to determine 

how we can represent them in our model.  

The three most important renewable energy sources are wind, biomass and solar. Wind and solar 

have similarities while biomass is more similar to thermal power plants in its operation. The main 

peculiarities of wind and solar are their intermittence, their availability and their zero marginal costs. 

Another issue that will be analyzed separately is the pricing mechanisms designed to incentivize the 

development of the renewable energies and how it influences their market behavior.  

Intermittence means that the generation from wind and solar depends on the presence of wind or 

sun and that the generation can have very fast changes. When the wind stops blowing, or the sun is 

clouded, the generation by a wind turbine or a solar panel can decrease very quickly. This has big 

implications for the electricity supply, mainly for the reserves necessary to cover the periods of low 

wind and solar power generation. This results in higher costs for the system because while the 

installed capacity of wind and solar increases steadily, conventional power plants are not 

decommissioned so fast because of the need of reserves to guarantee the electricity supply[4][5]. 

Apart from the periods with low generation, other problem is the fast fluctuation in generation. The 

variation is higher for wind power than for solar power. Usually the variability in the short term due 

to weather conditions decreases when a large number of wind turbines and solar panels are built 

over a big area, and the prediction capability is also better. But still, over several hours the variation 

can be very big. This also increases the need of reserves, and they need to be fast in order to 

accommodate the quick changes in generation. When the renewable energies penetration is low, the 

variability can be easily accommodated in the network. The output of a big wind or solar power plant 

can in the worst case go from null generation to full power in a few hours or vice versa but most of 

the time the variations in one minute to the next or one hour to the next are small. They are usually 



non-dispatchable, which means that the network operator usually has very little control of their 

generation. The effect on reserves depends too on the diversification of the renewable energy 

sources, having only one big renewable energy source has higher reserve requirements than several 

smaller sources [5] [6].  

The availability factor for solar and wind power plants are close to 100%. Their capacity factors are 

lower though, 25-40% for wind energy and 9-24% for solar power [7]. This means that, in contrast 

with thermal plants, we do not need to model solar panels and wind turbines unavailability. 

Another important characteristic is their marginal cost of zero. Most of the costs of the renewable 

energies are incurred at the time of construction. Even if the variable costs are zero, the builder of 

the plant needs to amortize the investment, and usually pays interest from debt which was used to 

build the plant, so the market prices have to be high enough to make the investment worthwhile. 

All these characteristics result in a great volatility for the electricity price depending on the amount 

of sun and wind generation. It can lead to prices close to zero or even negative because of the effect 

of feed in tariffs or the market premium. This can cause losses to the operators of base load power 

plants which need many hours of operation with high enough prices to amortize their plants.  

One of the solutions that is being used to solve these problems is further integration of the European 

grids. This can help to dampen the variability and the prices, reducing the need for reserves and 

increasing the supply reliability[5]. The interconnections can help make better use of renewable 

energy generation in times of low demand in the country they are produced and also complement 

the different renewable energies that are more prevalent in different countries. The development of 

High Voltage Direct Current (HVDC) has allowed to transport energy cheaply over longer distances 

than before such as across the English Channel. The main problem with interconnections are the high 

costs of the investments to build the transmission capacity. 

Storage is another option but for the moment the only economic storage solution is hydraulic pump 

storage power plants, and the possibilities to build these plants in Europe are quite limited[3].  

Weather forecasting can be used to adapt more easily to the quick fluctuations in production. With 

wind generation of below 5% of the demand forecasting is not considered to be necessary[5]. The 

better the forecasting tools the lesser reserve power will be needed to provide for network stability. 

However, the benefits provided by short term forecasts will only be meaningful if the network where 

they are used has short term flexibility. 
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2.1.1 Pricing mechanisms 

A brief explanation of the pricing mechanisms that were introduced to encourage the development 

of renewable energies is essential to understand why the wind and solar generation is price 

insensitive and how we will take it into account in our model. 

The last version of the renewable energies law in Germany (EEG, Erneuerbaren Energie Gesetz) 

introduced the Direct Marketing method. Previously, the renewable energies generators had the 

right to sell their production to the market at a fixed price, which was determined by the law. This is 

called Feed in Tariff[4]. 

When using Feed in Tariffs, the network operator is in charge of buying the renewable energy 

production and paying a fixed price for it. This takes from the renewable energies investors the price 

risk and the forecasting risk, and these risks are socialized. The price per kilowatt hour paid is being 

reduced slowly to compensate for the learning curve effects in the cost of renewable energies 

generation. Flexible caps were introduced, so that every year if the renewables generation target 

was met the tariffs are reduced depending on how much the target was exceeded, or increased if the 

target was not met. 

The network operator has to forecast the renewable energy production the day before and sell it in 

the day ahead market in a market price offer. The day of the delivery, the network operator does 

another forecast and compensates for the difference in the intraday market. The profit or the loss 

that the network operators make in the marketing of renewable energy production is included in the 

electricity bill paid by the end consumers. Some energy intensive firms are partly excluded from 

paying the renewable energies surcharge. 

With the introduction of the Direct Marketing, the operators of existing power plants have the 

option of selling their generation directly to the market. It is mandatory for all new installations 

bigger than 500 KW and starting in 2016 for those bigger than 100 KW. This was introduced to 

further integrate renewable energies in the market. Direct Marketing encourages the operators to 

control their production to make the highest possible profits.  

The sellers are compensated with the market premium model. When the operators sell a kilowatt 

hour to the market they get a market premium dependent on the market price at the moment and 

the technology used. The size of the market premium has been determined by the feed-in-tariffs 

given to that technology, the technologies with higher investment costs like solar get higher 

premiums to encourage their development. The market premium is also financed by the end 



consumer. The renewable energies subsidies are included in the bills of the consumers, although 

many industrial consumers have exemptions or reductions. In the year 2014 the renewable energy 

surcharge stood at 6.24 cents per KWh. It makes up for 22% of the electricity bill. 

The feed in tariffs insulate the producers from the fluctuations in the electricity price. The main 

problem with this is that the renewable energies producers are usually price inelastic, meaning that 

because they always get the same price they do not care about the market price. This has led to very 

low prices or even negative in moments of very high renewables generation. While the market 

premium starts to address this problem, it still offers some protection to the producers against the 

volatility of the electricity price. That is why the solar and wind generation is price inelastic and that 

is how we will treat it in the model. 

2.1.2 Wind power 

Wind power had an installed capacity of 45GW at the end of 2015 in Germany, although its share of 

electricity production is lower because of the lower number of full load hours compared to 

conventional power plants (around 18% in Germany for wind compared to 70-80% for Nuclear and 

Coal). It is the most important renewable energy source in Germany and the one which is growing 

faster at the moment[8][9]. 

The wind speed is lowest in southern Germany, higher in northern Germany, especially in the coast, 

and even higher in the sea. Because of this, most of the generation is concentrated in northern 

Germany. Some wind farms in the sea are also being developed, called offshore wind farms[10]. 

Wind energy generation is usually higher during the day than in the night and higher in winter than in 

summer. Meteorological forecasts can help to predict the wind generation very accurately. The 

accuracy is 90% within 48 to 72 hours and 95% within six hours[5]. With the increase of the share of 

electricity produced by wind power, the need of reserves or electricity storage increases. The need of 

reserves depends on the accuracy of the weather forecasts. 

Although offshore wind farms are more expensive than their on shore equivalents they also have 

some advantages. Wind speed is 70 to 100% higher than in the land. They have higher full load hours, 

the production is more constant because the wind speed is more constant and the lifespan of the 

turbines is longer. 

The concentration of wind power in northern Germany, while most of the big industrial consumers 

are in southern Germany is a problem and it requires to further build the transmission network. Very 
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high wind speeds can also be a problem because wind turbines get disconnected when the wind 

speed is higher than 25 m/s to prevent damage. This sudden disconnection can pose problems for 

the network stability. 

In our model we will use the wind energy production as a fixed time series using the historical 

generation in 2014. It is the best way to reflect the behavior of the wind energy producers. All the 

characteristics above mentioned, mainly the non dispatchability and the pricing mechanisms, 

encourage the operators of the wind turbines to always sell the production to the market when there 

is wind available, regardless of the price. That is the reason why a fixed time series will be used and 

no changes will be done to it during this work. 

2.1.3 Photovoltaic 

Photovoltaic is the second renewable energy source with most installed capacity, 38 GW in 2014, 

although its energy production is lower than biomass because of the low full load operating hours[9]. 

The years when more capacity was built were from 2009 to 2012, when the power increased from 10 

to 33 GW. Since then, because of the reduction in the subsidies, less new capacity is being added[11]. 

The production of photovoltaic energy has seasonal variations with a peak in summer, unless it is 

used in the equator. The generation also fluctuates daily, from dawn to dusk, and lastly depending on 

weather conditions. Clouds and rain reduce the photovoltaic production. Geographical distribution 

can help reduce the production volatility. 

In contrast with wind power, solar power is more prevalent in south Germany, where the sun 

radiation is higher. In 2014, Bavaria, with 11 GW, followed by Baden-Würtenberg with almost 5 GW, 

were the states with more solar power capacity[12]. 

Solar power generation occurs during peak demand time, so it helps to avoid building more peak 

power plants. 

The main problem with solar power is its high costs. Even if the learning curve effects and economies 

of scale have reduced the cost of building solar panels much more than it was expected, it still needs 

higher subsidies than other renewable energies. The low number of full load operation hours is the 

other main problem[4].  

In our model we will use a fixed time series to represent the photovoltaic production, similarly to 

wind power. The incentives of photovoltaic producers are similar to the ones that wind power 



producers have and their behavior is similar, producing regardless of the price. The main cause are 

the pricing mechanisms, both the feed-in-tariffs and the market premium. We will also do no 

changes to the model for solar power. 

2.1.4 Biomass 

Biomass is the second most important renewable energy by generation (48.9 TWh in 2014) and the 

third by installed capacity (6.38 GW in 2014). Its high number of utilization hours explains that it 

generates more than solar even if its installed capacity is lower[4]. 

 

Biomass is biological material derived from living or recently living organisms. In the context of 

biomass for energy this is often used to mean plant based material, but biomass can equally apply to 

both animal and vegetable derived material[13]. 

Biomass has more similarities with thermal power plants than with other renewable energies in its 

operation. Its generation is restricted mainly by the availability of fuel to operate the plant. As long as 

there is fuel available, biomass plants operate similarly to base load power plants, the main reason is 

that the pricing mechanisms introduced to encourage renewable energies protects it from price 

fluctuations and results on a constant generation during the whole year. That is the main reason why 

we model biomass in our simulations as a fixed time series. 

2.2 Load 

Because of the difficult storage of electricity, a big challenge of the electrical system is balancing 

demand and supply. This is the reason why the reserve market was created, to accommodate sudden 

changes in demand or supply. This means the generation must be matched to the load, because the 

load depends on the customer’s actions and cannot be influenced significantly by the network 

operator. Because of this, the fluctuations of the load greatly influence the electricity market and we 

will mention its most important characteristics and how we will consider them in our model. 

German electricity consumption in 2014 was 576.3 TWh, 3.8% less than in 2013 and a 6.5% decrease 

since 2008. By 2020, the goal is to reduce the consumption by 10% compared to 2008. This shows 

that Germany is improving its energy efficiency and that electricity consumption increases less than 

the size of the economy[4]. 
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The electricity demand in Germany has a strong variation during the day. The demand peaks are 

reached before midday and in the early afternoon. The peak period is considered from 8h to 20h 

from Monday to Friday and the rest is the valley period. The difference between peak and through 

has diminished over the last decades as shown in Figure 1[3]. 

 

Figure 1 Changes in the load shape [3]. 

The peak demand in Germany is usually reached in winter, mainly because of lighting demand and 

power and space heating. 6.1% of Germany’s heating is electrical. The peak in 2014 was 84 GW on 

the 7th of December at 17:00. The lowest demand in 2013 was 32.47 GW in the 2nd of June. This can 

seem too few compared to the 183 GW of installed power plant capacity, but excluding renewables 

whose production is unreliable there are around 90 GW left, so the peak demand can be covered 

even if the peak happens at a time with low renewable energy production[4]. 

Half of the electricity consumption in Germany comes from big industrial consumers. The other half 

is divided roughly equally between residential consumers on one hand and small industrial 

consumers and businesses on the other hand. Residential consumers make up the biggest group by 

number. The German retail energy sector has a low level of market concentration, with the four 

biggest suppliers having a 45.5% percent of the market, the rest are supplied by publicly owned 

Stadtwerke or smaller suppliers[4]. 

Consumer electricity prices of electricity have risen steadily in Germany in the past years both for 

retail customers and industrial customers because of the increase in taxes, levies and the renewable 

energies surcharge. Retail customers paid an average of 29.13 ct/KWh in 2014 out of which 13.87 
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cents were related to the electricity supply, 6.24 cents belonged to the renewable energies surcharge 

and the rest were taxes and levies. Industrial customers have exemptions in some taxes and the 

renewable surcharge so their prices can vary between 10 and 17 ct/KWh[4]. 

The electricity demand reacts in a very limited way to price changes; we can say it is almost price 

inelastic. The reason is that consumers have no incentive to react to price changes, because their real 

time electricity consumption cannot be measured and the bills they pay do not depend on the hour 

when the electricity was consumed. The daily fluctuation of demand, combined with the difficulty of 

storage, prevents the power plants from being used continuously. The minimum demand that has to 

be supplied all day long is called base load. The rest of the demand is called peak load. This influences 

the optimal composition of the power plant park. The base load is usually supplied by power plants 

with low variable costs and high fixed costs like nuclear plants and lignite plants while the peak load 

is supplied with plants that have lower fixed costs and higher variable costs. All of this influences the 

supply curve, called merit order, where each power plant bids at its marginal costs and depending on 

the demand, which we assumed almost inelastic, the price is determined[3]. 

A further factor to take into account is the technical requirements of the power plants. Demand can 

sometimes endure steep gradients which the power plants will struggle to supply and that can lead 

to a high price volatility. Power plants have limited power gradients, minimal power production and 

minimal start up and stopping time. All these limitations influence the behavior of prices in the short 

term. When under fast price changes, some power plant operators may decide to offer their 

electricity at a price below their marginal costs, if they think that because of the technical limitations 

of the power plant it suits them to have losses for a short time instead of shutting down the plant for 

a longer time. In extreme cases this has led to negative prices. 

The problem of forecasting demand combined with its low elasticity requires a flexible and 

diversified power plant park in order to reduce the price volatility. Renewable energies make more 

difficult matching demand and supply. Before, the load was not controllable but the supply was. But 

now, the renewable energies make the supply more volatile, hardens balancing demand and supply 

and increases the need of reserves. 

One of the solutions for this is demand side management. It is a way for the utilities to match the 

demand and supply curves and change the shape of the demand curve to reduce costs. This reduces 

the need for power plant capacity and can help reduce the costs of the electric system. The main way 

utilities can achieve this is by using smart meters, which can measure at what time the consumer 

used electricity so they can be billed according to the market prices. The objective is to use market 
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prices as a signal for consumers to switch their consumption to lower price times. Studies show that 

smart meters also reduce electricity consumption by 5% approximately[14]. 

In our model we will also treat the demand as a fixed time series. Even if some ways to encourage 

demand response to price are being considered and researched, they are still at an infant stage. 

Smart meters in particular will only be adopted by particular groups of customers following a cost 

benefit analysis that concluded they were not worth the cost for most of them [15]. 

2.3 Thermal power plants 

Thermal power plants make up the backbone of the German electricity generation. Most of the not 

renewable energy generation is carried out by thermal power plants. Their share of the total capacity 

is higher than 50% [4].  

The main types of fuel used in thermal plants are lignite, hard coal, nuclear elements, natural gas and 

oil. Depending on the type of the turbine they are divided in steam turbines and gas turbines. Gas 

turbines use only oil and natural gas while steam turbines also use coal and nuclear elements, usually 

uranium. Combined cycle power plants combine the characteristics of the two types. Each power 

plant type has a different role in the electricity supply. Lignite and nuclear plants fulfill the base load 

function, hard coal middle load and gas turbines peak load. Base load power plants have lower 

variable costs and higher fixed costs; the opposite is the true for peak load power plants. Base load 

power plants have very slow starts while peak load power plants are much faster [2].  

The main characteristic of the thermal plants is that they are dispatchable, meaning their generation 

can be controlled and its operators can react to changes in electricity prices, although with some 

technical limitations in their operation. 

Thermal power plants are divided in independently operated blocks. Each block has technical 

limitations that we need to take into account in our model. Each block can be in two states, 

operating or stopped. If it is operating, the power attained is limited by the maximum power and the 

minimum power. The minimum power is usually 20-50% of the maximum power and it needs to be 

respected to operate the block safely. While stopped, the power is zero[2]. 

The operation of the blocks is also limited by the minimum operating time and the minimum 

stopping time, the change between two states cannot be done very often. Typical amounts for big 

steam power plant blocks are five hours when in operation and eight hours when stopped. 



The power gradient is a further limitation for power plants blocks. It depends on the type of the 

turbine, the steam generator and the steam circuit. Gas turbines can sustain the highest power 

gradients, and can reach full power in a few minutes starting from null. Big power gradients should 

be avoided in order to increase the life expectancy of the equipment. 

The unavailability of thermal power plants has a great influence in their operation. The availability 

ratio is the amount of time that a power plant is able to produce electricity divided by the amount of 

time in the period. This ratio oscillates between 70% and 90% for thermal power plants. It takes into 

account the time when the power plant can produce electricity, not how many time it is actually 

operating. The reliability of the power plant depends of the type of fuel, the size and how it is 

operated. Usually newer power plants have higher availability ratios because of the improved 

technology. Bigger plants also have a slightly higher availability[16]. 

Peak power plants usually show very high availability ratios, close to 100%, because their low usage 

reduces the need for maintenance.  

Power plants accidents require the network operator to activate the reserves. The effect of the 

accidents on the market price can be very different depending on the time of the accident. If it 

happens in winter when there is strong demand, the price will increase more than in summer. 

Unavailability is divided in two types, planned and unplanned unavailability. Planned unavailability 

has to be communicated more than 4 weeks before it will happen. Unplanned unavailability cannot 

be postponed or only up to 4 weeks. It is subdivided in postponable and not postponable. 

Postponable unavailability can be postponed from 12 hours to 4 weeks while not postponable can be 

postponed less than 12 hours[17]. External causes that prevent the power plant from supplying 

energy, like a fuel shortage, do not count towards unavailability. 

Because of the importance of thermal plants in the overall electricity market in our model they are 

represented by agents who decide individually about the amount of their production and whether to 

sell it in the spot market or to participate in the reserve markets. The above mentioned limitations in 

their operation are incorporated in the model. 

The main part of the thermal power plants model will not be changed, it will still be an agent based 

simulation. However, the unavailability of these power plants will be changed. Previously, our model 

used stochastic data to model this. This data was produced assuming an average unavailability value 

for each technology type and then a statistical distribution was generated. This data will be 
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substituted with the historical data obtained from EEX webpage https://www.eex-

transparency.com/. This data is presented in a per unit basis, meaning that every accident or 

maintenance of each power plant will be used. We will study the effect on prices when using the new 

data. 

2.4 Hydroelectric power plants 

Hydraulic power is only a small part of the German electricity market, due to the small technical 

potential that Germany has. It had a capacity of almost 4 GW and generated 20.8 TWh in 2014. Still, 

it has a great importance in particular for their storage capabilities. The main types are running 

water, dams and pumped storage power plants [4]. The main characteristics of the hydraulic power 

plants that affect the market price are: 

High availability, caused by the purely mechanical nature of the power plants which reduce the 

possibilities of accidents and the need of maintenance. Because of this we will not model the 

hydroelectric power plants unavailability. 

High flexibility, the limitations that hydraulic power plants have are lower than in the thermal plants 

because of the lack of thermal gradients. They can be started very quickly and reach maximum power 

in two minutes approximately. The minimum operating time and stopping time are lower than in 

thermal plants and they do not restrict their operation significantly. Storage power plants, which 

make up most of the hydraulic power plants, are used usually for peak load and for the reserve 

market because of their flexibility, and the installed power is big compared to the produced 

electricity. 

Hydroelectric power plants have close to zero marginal costs, except for pumps which can have grid 

connection costs. Still, the opportunity cost of using water is more important than the marginal costs. 

This is a limiting factor inexistent for thermal plants. While running water power plants cannot 

control their output, dams allows the power plant to reduce its dependence on water supply. The 

generation can be made independent of the supply up to a certain point, dependent on the size of 

the storage and the water flow. Hydraulic plants have to try to use their water when the prices are 

high and pump water back up when the prices are low. Managing the water reserves is more 

important than the marginal costs in the operation of hydraulic power plants [2].  

The stored water has an upper limit, namely the size of the dam and a lower limit that should not be 

surpassed to avoid damage to the turbines by sand. The water flow through the turbines is also 

https://www.eex-transparency.com/
https://www.eex-transparency.com/


limited by the technical specifications of the turbine. The water supply of hydroelectric power plants 

is often interconnected. This is an issue that has to be taken into account because the availability of 

water in one plant may be dependent on the generation of other power plants. 

Some hydraulic power plants are used as pumped storage plants. They are the only economical 

energy storage available at a grid level and they make up for 99% of the world wide bulk storage. 

These power plants sell their production at peak load and then pump the water up to the storage 

lake when the prices are low. An overall efficiency of both cycles of about 70-80% can be obtained. 

Their economical use is limited by high costs and can only be built in certain locations [2][18].  

In a similar way to the thermal power plants, hydraulic power plants are represented with agents in 

the model. The limiting factors described above are taken into account. Their bidding behavior under 

water restrictions is a very important factor in their modeling and is also included. No changes will be 

made to the hydraulic system model. 
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3 Model comparison 

The main change we are going to do in our model is related to the downtime of thermal power 

plants. The previous model that was used for the simulations was based on historical values for each 

technology type and it was generated stochastically. The new data we are going to use is the real 

historical data of unavailability for each power plant in 2014.  

We will only model the unavailability of thermal power plants. Hydraulic power plants have a much 

lower need for maintenance and its availability ratios are close to 100%. For renewable energies the 

unavailability is modelled implicitly in the generation time series. 

First of all, we will analyze the stochastic model, and then we will see which differences the historical 

model presents. 

3.1 Stochastic model 

The data used in this model was generated stochastically, meaning randomly. For each technology 

type, an unavailability factor was assumed on a monthly basis. Then, the revisions would be 

generated randomly for each power plant based on the unavailability factor for its technology.  

This model only uses the planned unavailability, because we will simulate the day ahead market and 

the reserve markets. Were we to simulate the intraday market, we would also use the unplanned 

unavailability. We will first look at the data on a monthly basis in Figure 2 and Table 1. 

 

Figure 2 Monthly average unavailability (planned) 
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Average unavailable power (GW) 
       

 

Months 
         Fuel type 1 2 3 4 5 6 7 8 9 10 11 12 

Lignite 1.6 1.8 2.0 2.6 2.3 2.2 1.5 2.2 2.1 1.1 2.0 3.7 

Gas 1.2 0.9 1.5 1.3 1.6 1.2 1.1 0.6 1.8 1.2 0.5 0.5 

Nuclear 0.6 0.0 0.4 4.8 4.2 3.4 2.6 2.7 1.3 0.8 0.0 0.0 

Oil 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Hard Coal 1.8 2.0 2.8 3.0 3.0 3.1 3.7 4.3 3.9 4.5 2.2 4.8 

Total 5.4 4.8 6.8 11.9 11.3 10.2 8.9 9.8 9.2 7.6 4.7 9.0 

Table 1 Monthly average unavailability (planned) 

In this model, higher unavailability occurs in the months from April to September, with December as 

an outlier. These results are based on an assumption consistent with the usual operation of power 

plants. The lower demand for electricity in summer encourages the power plants operators to 

schedule the maintenance of the power plants in summer. In the model, the biggest value, 11.87 GW 

is 2.5 times bigger than the lowest, 4.7 GW in November. The higher unavailability in December is 

explained by the higher maintenance during the holidays. 

While all of the plant types follow this pattern, the nuclear power plants have the strongest 

variations, with a downtime of 4756 MW in April and 0 in February, November and December. In 

Table 2 we show the yearly averages of each technology type. 

Fuel type Yearly average (MW) Total power (MW) % of total power 

Lignite 2094 21250 9.85% 

Gas 1134 28930 3.92% 

Nuclear 1736 12070 14.38% 

Oil 93 5480 1.69% 

Hard Coal 3272 26190 12.49% 

Total 8328 88440 9.42% 

Table 2 Unavailability as a percentage of the German power plant in 2014 

The highest value is hard coal, with a yearly average of 3272 MW. Oil power plants stand out because 

of their low downtime, caused by the low number of oil power plants in operation and their low 

usage reduces the need for maintenance. Even if hard coal had the highest average downtime in 

megawatts, nuclear had a higher percentage compared to the total of nuclear power plants. Oil 

downtime is very low, while lignite and hard coal had intermediate values. 

The data for gas turbines is lower than what it would be expected. The real unavailability is usually 

higher than the values we used in this model, only 3.92%. This difference is explained because of the 

different modeling of Combined Heat and Power (CHP) in our program. Anyway, the influence of the 
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unavailability of gas turbines is lower because of their lower usage, as they are peak load power 

plants. The unavailability of big base load power plants has a bigger influence in the prices than the 

values for peak power plants. 

The unavailability also has weekly oscillations as seen in Figure 3. 

 

Figure 3 Weekly average of the unavailability 

The unavailability is higher during the weekends and slightly higher on Fridays. This is explained by 

the lower load and prices that encourage the power plant operators to schedule the unavailability in 

those periods. Figure 4 shows the weekly variation of the load that explains this variation of 

unavailability. 
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Figure 4 Average weekly demand (2014) 

The load is markedly lower on weekends, with Sunday morning having the lowest load of the week. 

The average in the weekend is 52195 MW compared to 61920 MW during the week. 

If we look at the per unit data for each technology type: 

 

Figure 5 Nuclear plants unavailability per unit 

As shown in Figure 5, there is not a big variation in nuclear power plants, all of them are in the 7%-

30% interval. 
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Figure 6 Lignite power plants unavailability 

 

Figure 7 Hard coal power plants unavailability 

Figure 6 and Figure 7 show the unavailability of hard coal and lignite. The stochastic method 

generates random values near the average for the technology type. If we include more values, we 

will have more that are further away from the average. That is why the nuclear plants have a lower 

variation of unavailability than lignite power plants and they, in turn, have a lower variation than 

hard coal plants. 
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Figure 8 Unavailability by power plant 

We can see that most of the data is in the range from 0% to 30% in Figure 8, except from a few 

outliers that don’t surpass 60%. We will compare this data later with the historical per unit numbers. 

3.2 Historical model 

This data was obtained from the EEX website. As stated there: “The information includes both 

planned and unplanned unavailability for plants of any size. Every unavailability of at least 100 MW 

that lasts one hour has to be reported. Every unavailability of more than 10 MW that lasts more than 

15 minutes can be reported”[19]. 

Even though we obtained the data for both planned and unplanned unavailability, we will only use 

the planned unavailability because we are simulating the day ahead market. Still, looking at the 

unplanned unavailability helps us understand planned unavailability better. Like we did with the 

stochastic data we will first look at the monthly averages in Figure 9. 
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Figure 9 Historical unavailability (total) 

We include the total unavailability; the unplanned unavailability does not influence significantly the 

monthly variation. 

As we look at the historical data, our previous assumption that maintenance is higher in summer is 

proved. The variation is even bigger than what we assumed in the previous model as it can be easily 

seen in the graphic. The month with the greater number of plants in downtime was May with 21.6 

GW followed by August with 18.5 GW. The months with lower unavailability were February with 4.7 

GW and January with 5 GW. The difference between the biggest and the lowest amount is 4.6 times, 

compared with 2.5 times for the stochastic model. 

Similarly to the stochastic model, the months from October to March have the lowest unavailability, 

with an average of 5.52 GW compared to the average of 16.7 GW from April to September. 

December is also a bit higher than the other winter months in both models. December is an outlier, 

explained by the winter holiday which is a period with low prices when some power plant operators 

schedule their maintenance. 

Even if all the technology types have a big monthly variation, the highest value being about four 

times the lowest value, nuclear power stands out as the technology with the starkest differences. 

Nuclear power plants were very reliable in the months with higher load, most of their downtime was 

planned for the summer months. In February, October, November and December the unavailability 
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was negligible. As we can see in Table 3, this can be explained by the low proportion of unplanned 

unavailability to planned unavailability of nuclear power plants. 

Fuel type Planned Unplanned Total Unplanned/total 

Gas 7.60% 1.12% 8.72% 12.9% 

Hard Coal 11.21% 3.06% 14.27% 21.4% 

Lignite 12.85% 2.04% 14.89% 13.7% 

Nuclear 13.81% 0.70% 14.51% 4.8% 

Oil 0.07% 0.49% 0.56% 87.5% 

Total 10.85% 1.90% 12.75% 14.91% 

Table 3 Planned compared to unplanned unavailability 

Nuclear power plants are the most reliable, their ratio of unplanned to total unavailability is the 

lowest of all the technologies at 4.8%. This increases the system stability because planned 

unavailability has to be communicated at least four weeks before it happens. It also allows the 

market participants to anticipate the reduction of generation of nuclear power plants, which are 

quite large, and adjust their generation accordingly. It also encourages the operators of the nuclear 

power plants to schedule most of the maintenance in summer when the load is lower. Hard coal 

power plants have the highest ratio at 21.4%. 

We will now analyze the differences between each technology type in each model. In order to 

compare both models we use the planned unavailability, which is the only data used in the stochastic 

model. 

 

Figure 10 Hard Coal unavailability 
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In hard coal (Figure 10), we can appreciate the bigger monthly variation in the historical model 

compared to the stochastic model. The yearly averages are not very different. 

 

Figure 11 Lignite unavailability 

For lignite the historical model also presents a higher variability, and the overall values are higher 

than in the historical model (Figure 11). 

 

Figure 12 Nuclear power plants unavailability 

Figure 12 shows that the data from both models is very similar. There were 8 nuclear power plants in 

Germany in 2014, all of them with a power ranging from 1200 to 1400 MW. These plants usually 

have maintenance once every year of about one month where the generation is stopped completely. 
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When this maintenance is done has a big influence in the market because of their size, and it is 

usually done in the months from April to September, when the load is lower. Both models have one 

month with a very large value, April in the stochastic and May in the historic model. The rest of the 

values are very similar, with unavailability decreasing steadily from the peak month until it reaches a 

null value in November. The low value of unplanned unavailability keeps the total unavailability 

extremely low in winter, when the load is higher. 

We will now compare the yearly averages per technology type in Table 4. 

Type   
Yearly average 

(MW) 
% of total 

power 

Gas New 2198 7.60% 

 
Old 1134 3.92% 

    Hard Coal New 2935 11.21% 

 
Old 3272 12.49% 

    Lignite New 2731 12.85% 

 
Old 2094 9.85% 

    Nuclear New 1666 13.81% 

 
Old 1736 14.38% 

    Oil New 4 0.07% 

 
Old 93 1.69% 

    Total New 9599 10.9% 

 
Old 8328 9.4% 

Table 4 Yearly averages comparison (planned) 

The yearly average is higher in the historical model than in the stochastic model. The stochastic 

model yearly average is 8.3 GW compared to 9.6 GW for the historical model. Most of that increase, 

1.1 GW, comes from the gas turbines due to the changes in the CHP. Hard Coal is 300 MW lower in 

the new model, nuclear power is very similar with only a difference of 70 MW and Lignite is 600 MW 

higher in the new model. Still, both models have values that can be expected from the historical 

behavior of the technologies. The average values of the models are very similar, the biggest variation 

comes with the gas turbines because of other changes in the model. The differences in nuclear and 

lignite largely balance each other. It is worth mentioning the sharp yearly variation, which is even 

bigger than what was assumed in the stochastic model.  
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In Figure 13 we look at the weekly average of the unavailability. 

 

Figure 13 Average unavailability on a weekly basis 

The unavailability is usually higher on weekends, 11570 MW on average compared to 8715 MW 

during the week. The variation of the unavailability in the historic model is relatively lower than in 

the stochastic as we see in Table 5. 

 

Week (MW) Weekend (MW) Weekend/Week 

Historic 8715 11570 1.33 

Stochastic 6643 10446 1.57 

Table 5 Comparison of the weekly variation 
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Now analyzing the per unit values in Figure 14: 

 

Figure 14 Unavailability in each unit 

Most of the values are in the same range as the values in the stochastic model, in the 0-30% range. 

But the number of outliers over 30% is bigger, 10 in the historical compared to 4 in the stochastic 

model. 

 

Nuclear Lignite Hard coal Gas Total 

Standard deviation (stochastic) 0.067 0.098 0.093 0.059 0.092 

Standard deviation (historic) 0.060 0.085 0.119 0.181 0.128 

Table 6 Standard deviation of the unavailability 

The standard deviation, shown in Table 6, is higher overall in the historical model. We can say that 

the statistical distribution generated for the old model was more concentrated next to the average 

than it really happened in reality. Still, the historical model has a slightly lower standard deviation for 

nuclear and lignite. Hard coal has a higher standard deviation in the historical model, as well as gas 

turbines.  

An interesting analysis is looking if there is a relation between power plant size and unavailability 

holds true like we mentioned in 2.3. We look at the relationship between these two variables in 

Figure 15 distinguishing by technology type. 
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Figure 15 Unavailability compared to power plant size (nuclear, lignite and hard coal) 

We only take lignite, nuclear and hard coal because they are the technology types with comparable 

values. Most of the power plants are in the region from 0 to 30% unavailability irrespective of size. 

The few outliers with higher unavailability have relatively low power but not extremely low. Even if 

the data does not prove this correlation, the data of one year is not enough to prove it, taking into 

account the low amount of data, mainly with the bigger power plants. An analysis over several years 

would be necessary. 

 

 

 

 

 

0

200

400

600

800

1000

1200

1400

1600

0% 10% 20% 30% 40% 50% 60% 70%

P
o

w
e

r 
(M

W
)

Unavailability

Unavailability and plant size

Hard coal

Lignite

Nuclear



4 Investigation results 

4.1 Price analysis 

The data that we will analyze under several viewpoints is the day ahead spot market price. These are 

hourly prices, meaning we have 8760 data for the whole year. We will also study how strong is the 

influence of the data of the new model in the price. 

 

Figure 16 Base, Peak and Off peak prices 

Figure 16 shows the average peak, off peak and base prices for the two models and the historic 

prices. The new model has an average price closer to the historic price than the old model. The 

historic average was 32.76 €/MWh compared with 33.8 in the old and 32.36 in the new model. On 

average, the prices are lower in the new model than in both the historic prices and the old model. Off 

peak values have an improvement too, the new model gives 29.04 €/MWh compared to 28.27 in the 

real data. The peak values are much lower though, this was better represented by the old model. 

Figure 17 shows the weekly averages of the price. Analyzing the weekly averages is interesting in 

order to see how well the model performs in each day of the week. As we saw in Chapter 3.2, the 

demand is very similar from Monday to Friday, while it is lower on Saturday and even lower on 

Sunday. 
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Figure 17 Average weekly price 

The data from the new model is better than the old in some days and worse in others. The best 

improvement happens in Sundays, where both models are still above the historic data.  

We will now look at the duration curve (Figure 18). This is a graph that orders the prices from highest 

to lowest. It is a good way to check if the distribution of the prices is similar in the models. While it 

does not take into account when those prices occurred, it is unreasonable to expect the model to 

produce the exact same values in the same time periods, especially the price spikes. But it is useful to 

check if the model produces a similar amount of prices in each price range.  

 

Figure 18 Duration curve 
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Most of the curve is fitted very well by both models but some parts fit better than others. We show 

some parts of the curve with greater detail. The middle range of the curve is the part that is 

approximated better: 

 

Figure 19 Duration curve from the 1000 to the 6000 hour 

Both models perform similarly, with the historical better in the lower prices and the stochastic better 

with higher prices. This part makes up most of the year, 5000 hours out of 8760, 57% of the year. The 

new model is most of the time below the historical prices, like we observed in the average values. 

 

Figure 20 Prices from the hour 6000 until the 8760 
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The prices from the hour 6000 until the end were approximated worse with the old model, the new 

model gets closer to the historic values but it is still does not decrease fast enough. These lower 

prices are related to the lowest weekly prices which usually occur on Sundays and the new model 

approximates these values better than the old. 

It is in the extremes of the curve where there are more differences between the model and the 

historical values as we see in Figure 21 and Figure 22.  

 

Figure 21 Highest prices of the year 

Both models produce more price spikes than in reality. In fact, in 2014 there were not any prices 

above 90€/MWh while the old model generated 31 and the new, 20. While extremely high prices 

(higher than 100€/MWh) have been observed a few times, like 389.44 €/MWh on 25/07/2006, they 

are not that common to appear 20 times every year. We will look in Table 7 at what causes these 

high prices in the new model. 

 

Demand (MW) Unavailability (MW) PV (MW) Wind (MW) 

Peak 68485 8663 7453 5911 

Base  59150 9528 3818 6062 

Off peak 53955 10009 1795 6146 

Average for prices  68943 12636 4086 2247 

higher than 90 
    

Table 7 Factors that generate the highest prices 

For the average of the 20 highest prices we have a load with a value usual for a peak load, while the 

unavailability is very high, higher than the values that would be expected for off peak. Solar power 
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generation was average while wind was very low. While the unavailability usually occurs in the valley 

period, when there was a coincidence of high demand and high unavailability the price had a higher 

chance of shooting up. The price spikes do not necessarily occur at the same time that it did in the 

old model, the average prices in those same hours were 55.7 €/MWh for the old model and 47.04 for 

the EPEX prices. These differences between the models are probably caused by differences in the 

operations of the power plants and because of their limitations. Still, these prices do not have a great 

effect, as they are a small proportion of all the prices in a year.  

 

Figure 22 Lowest prices of the year 

None of the two models can generate negative prices. Some of the costs power plants operators 

incur when shutting down their plants are not included in the models, and this prevents negative 

prices from appearing because the agents of the model can stop production while not incurring these 

costs while in reality they maybe would have continued selling electricity even at negative prices 

because it was the most economical choice. Like we did with the high prices, in Table 8 we will look 

at what values the parameters of the model had in these hours. There were 64 negative prices in 

2014 which makes them bigger in number than the very high prices produced by the models. 

 

Demand (MW) Unavailability (MW) PV (MW) Wind (MW) 

Peak 68485 8663 7453 5911 

Base  59150 9528 3818 6062 

Off-peak 53955 10009 1795 6146 

Negative prices average 49011 9650 3520 21471 

Table 8 Factors that generated low prices 

-80

-70

-60

-50

-40

-30

-20

-10

0

10

8500 8550 8600 8650 8700 8750

P
ri

ce
 (

€
/M

w
h

)

Hours

EPEX 2014 Old model

New model



Investigation results 35 

 

The negative prices were generated in periods with low demand and extremely high wind 

generation. The yearly average wind generation is 6 GW. While the maximum wind generation in 

2014 was 28.28 GW, the wind generation only surpassed 20 GW in 290 hours of the year. The 

averages of the prices for the old model and the new model were 6.62 €/MWh and 9.7 €/MWh, 

respectively. While they were not negative like the historical prices, they were low too. The values of 

the unavailability and solar generation at those times were average.  

Negative prices usually happen several hours in a row as we see in Table 9, usually getting more 

negative before they return to positive. This can also be explained by the technical limitations of the 

thermal power plants, the big ones in particular. 

Date   EPEX 2014 Demand PV Wind 

16/03/2014 00:00 -0.02 47819 0 20570 

16/03/2014 01:00 -25.08 46129 0 21316 

16/03/2014 02:00 -25.06 44584 0 21549 

16/03/2014 03:00 -60.26 43819 0 21584 

16/03/2014 04:00 -50.65 43969 0 21696 

16/03/2014 05:00 -50.12 43832 0 21674 

16/03/2014 06:00 -25.08 43668 26 21608 

16/03/2014 07:00 -25.00 45676 236 21498 

16/03/2014 08:00 0.05 48876 623 21619 

16/03/2014 09:00 10.77 51989 1234 22168 

Table 9 Eight hours of negative prices 

These eight hours of negative prices were caused by a low demand (that day was a Sunday), 

combined with a very high wind generation. The situation got worse when the load decreased at 3:00 

and the prices only increased above zero in the morning when the load started increasing again. The 

wind generation stayed almost constant during this interval, unaffected by the negative prices. The 

unavailability did not have a big influence. 

4.2 Regression analysis 

Now we will analyze the correlation between the load and the prices for the historic values and the 

new model in Figure 23 Historic prices compared to the load and Figure 24. 



 

Figure 23 Historic prices compared to the load 

 

Figure 24 New model prices compared to the load 

The correlation between the load and the price is significant, and it is higher in the historic prices 

than in the results of the simulations. The very high prices in the new model and the very low 

historical prices fall well outside the linear relationship. This reminds us of the low elasticity of the 

load, which reacts in a very limited way to extreme prices. The load is the parameter that has a 

biggest effect in the price when looking at them separately. The unavailability, we see in Figure 25, 

does not have such a strong correlation and neither do the wind and solar power generation. 
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Figure 25 Unavailability compared to historic prices 

The correlation between the unavailability and the price is not significant in any of the models nor in 

the historic prices. In fact, the historic prices were higher in periods of higher unavailability than in 

periods of lower unavailability. This was probably caused by the power plants operators scheduling 

their maintenance in periods of expected lower prices and them not causing a very big influence in 

the market. We will now run a regression shown in Table 10 and Table 11 to see how big their effect 

is if we consider all the factors at the same time. The variables we will include are solar generation, 

wind generation, planned unavailability and load.  

EPEX 2014 
 Statistics of regression 

Coefficient of multiple correlation 0.8950 

Coefficient of determination R2 0.8011 

Adjusted R2  0.8010 

Standard error 5.6992 

Observations 8760 

  

  Coefficients Std. error t statistic p-value 

Intersection -28.99927 0.518571292 -55.9215 0 

Solar generation (MW) -0.00104 1.27594E-05 -81.4074 0 

Wind generation (MW) -0.00121 1.20237E-05 -100.7574 0 

Planned unavailability (MW) 0.00023 1.22599E-05 18.8534 9.4275E-78 

Load (MW) 0.00120 7.82138E-06 153.1860 0 

Table 10 Results of the regression from historical prices 
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These four factors influenced the historic price greatly, having an adjusted R2 of 0.8. Higher 

unavailability and load provoked higher prices while solar and wind generation reduced prices. The 

relationship with the load is much stronger than with the unavailability, with coefficients of 1.2E-03 

and 2.3E-04 respectively. The coefficients of wind and solar generation are similar in absolute value 

to the coefficient of the load but with opposite sign. The p values of the four variables are almost 

zero, meaning we can assume that a correlation exists.  

In chapter 2 we explained why we decided to represent both the load and the renewable energies 

generation as a fixed time series. When we look at their coefficients we can see that their effect is 

very similar (although with the opposite sign for the renewable energies) and justifies our decision. 

Their small price elasticity makes them extremely important to determine the price. On the contrary, 

the unavailability, the planned in particular, is scheduled to try to avoid big effects on the prices.  

The independent term is negative, as it has to compensate the values of the load which are always 

positive and has an average of around 59 GW during the year. Now we will look at the new model, 

shown in Table 11. 

Statistics of regression 

Coefficient of multiple correlation 0.7367 

Coefficient of determination R2 0.5427 

Adjusted R2  0.5425 

Standard error 7.9776 

Observations 8760 

 

  Coefficients 
Standard 

error t statistic p-value 

Intersection -25.34071 0.72588283 -34.91019 4.127E-250 

Solar generation (MW) -0.00075 1.786E-05 -42.03793 0 

Wind generation (MW) -0.00076 1.683E-05 -45.06066 0 

Planned unavailability (MW) 0.00058 1.7161E-05 33.83363 6.122E-236 

Load (MW) 0.00101 1.0948E-05 92.08819 0 

Table 11 Regression of the new model 

The new model has a lower correlation between these factors than the historic prices. The 

coefficient of the unavailability is much higher, 5.8E-04 compared to 2.3E-04 while the other 

coefficients are lower. The intersection is higher, probably influenced by the lack of negative prices of 

our model although those prices are far from the regression line.  
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5 Conclusions 

The electric sector is undergoing intense changes in order to increase the share of the generation by 

renewable energies. The spot market is at the center of this transformation. Its role is extremely 

important to balance demand and supply; the prices are a signal to market participants to increase or 

reduce their production. The effects of the steadily increasing renewable energy generation are 

already getting reflected in the behavior of the market price, even though renewable energies still do 

not account for the majority of the generation. Negative prices, for instance, cannot be understood 

without knowing the important role that renewable energies play. The prices also give the necessary 

incentives to market participants so they can adapt to the changes in the future electricity markets. 

The importance of the spot market led us to develop a model to simulate its behavior. This would be 

useful to forecast the effect on electricity prices produced by different changes in the electrical 

sector, like an increase of the renewable energies generation. The objective of this work was to 

improve the model to simulate the prices of 2014. The main parameters we used were the thermal 

and hydraulic power plants, the load and the renewable energies generation. Both the thermal and 

hydraulic power plants were modeled with agents while the load and the renewable energies 

generation were modeled with a fixed time series of the values of 2014.  

In this work, we modified the model for the unavailability of thermal power plants. The model that 

was used for unavailability previously was generated stochastically assuming average values for each 

technology type. This was substituted by a model including the historical unavailability from 2014. 

There are several differences between both models that had an impact on the simulated prices. The 

unavailability used in the stochastic model is lower on average than the historical unavailability. The 

monthly distribution is also different, the historic model has a much bigger monthly variation, with 

the highest values concentrated in the months with lower load and prices. The last thing to note is 

that the historical model has a higher variation of unavailability in a per unit basis than the 

distribution generated in the stochastic model. 

These differences in the models had effects on the prices. The higher average unavailability would be 

expected to produce higher average prices. However, the prices produced with the new model were 

lower rather than higher. This could be explained by the different monthly distribution, with the 

higher prices decreasing more than the increase of the lower prices. This is caused by the shape of 

the merit order curve; whose slope is higher in the part with higher prices. Both the base and the off 



peak prices are, on average, closer to the historical with the new model. The peak values were 

approximated better with the stochastic model though; they are too low with the new model. 

The central part of the duration curve is already simulated fairly well by both models. The lower 

prices generated by the new model help to fit better the part from 6000 to 8760 hours. The new 

model also had an effect on the range of higher values. The different distribution of the unavailability 

could explain the reduction in the number of price spikes, decreasing the number of hours when 

both the load and the unavailability are high and the renewable energy generation is low. At the 

other side of the price range, negative prices still cannot be properly simulated, further limitations 

and economic costs in the operation of the thermal power plants that are not considered in the 

model would need to be added. 

A multivariate regression was run to estimate the influence of the parameters on the price, mainly 

the unavailability, load and renewable generation. The correlation of these parameters with the 

historic price was very high, with an adjusted R2 of 0.8. The new model had a lower but still 

significant correlation of 0.54.  

Unavailability had the lowest effect of the factors considered. This can be explained because the 

unavailability, unlike other factors, is planned by the plant operator to occur at a convenient time 

and must be communicated four weeks before it will happen. This means it is more price elastic than 

the other factors. It is much more controllable and predictable, and as we observed the unavailability 

tends to be planned to occur in periods with lower prices. This is why the effect of unavailability on 

prices is lower than the other much more unpredictable and uncontrollable factors. Because of its 

low price inelasticity, the load and the renewable energies generation are modeled accurately with a 

fixed time series and the correlation with the price is high. In fact, the value of the coefficient of the 

regression is very similar in absolute value for the load and the renewable energies. This could 

change in the future if the price volatility and the negative prices encourage the load and the 

renewable energies generation to become more price elastic. For instance, the market premium 

model for remuneration of renewable energies which was recently introduced could increase their 

price elasticity. Smart meters could also increase the flexibility of the load.  
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