

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
NombreCompleto	Circuitos Microelectrónicos II	
Código	DEA-GITI-443	
Título	Grado en Ingeniería en Tecnologías Industriales	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Cuarto Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	4,5	
Carácter	Optativa (Grado)	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Responsable	Romano Giannetti	

Datos del profesorado		
Profesor		
Nombre	Javier Montero de Paz	
Correo electrónico	jmdepaz@icai.comillas.edu	
Profesores de laboratorio		
Profesor		
Nombre	Raul Robledo Cabezuela	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	raul_robledo_c@hotmail.com	
Profesor		
Nombre	Sara Lorenzo Ros	
Departamento / Área	Departamento de Matemática Aplicada	
Correo electrónico	slorenzo@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Este es un curso avanzado de electrónica analógica, continuación de la asignatura Circuito Microelectrónicos I del primer cuatrimestre del 4º curso. El objetivo fundamental de este curso es el estudio de circuitos electrónicos para el tratamiento de señales analógicas.

GUÍA DOCENTE 2018 - 2019

En este curso nos proponemos diseñar circuitos electrónicos complejos, mediante la interconexión de distintas etapas básicas. El diseño de este tipo de circuitos permitirá familiarizarnos con los procedimientos básicos del diseño de sistemas electrónicos, las técnicas habituales de medida, y los fundamentos teóricos estudiados en clase.

Prerrequisitos

Conocimientos intermedio de electrónica (Contenido de las asignaturas de Electrónica de 2º curso y de Circuitos Microelectrónicos I de 4º curso).

Competencias - Objetivos			
Competer	Competencias		
GENERALE	GENERALES		
CG01	Capacidad para el desarrollo de proyectos en el ámbito de la Ingeniería Industrial.		
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.		
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.		
ESPECÍFICAS			
CEN02	Conocimiento de los fundamentos y aplicaciones de la electrónica analógica.		
CEN05	Conocimiento aplicado de instrumentación electrónica.		

Resultados de Aprendizaje		
RA1	Conocer el concepto de filtro y saber diseñar filtros activos estándar	
RA2	Analizar y diseñar osciladores lineales y no lineales.	
RA3	Entender el concepto de conversión analógico-digital y digital-analógica, así como los circuitos que la realizan. Conocer el concepto de ruido electró- nico y su efecto en los sistemas previamente mencionados.	
RA4	Entender la clasificación de los diferentes tipos de sensores y saber diseñar circuitos de acondicionamiento apropiados para cada tipo de dispositivo, incluida la eventual etapa de conversión analógica-digital o digital-analógica.	
RA5	Diseñar circuitos electrónicos analógicos complejos, montarlos en laboratorio, comprobar su correcto funcionamiento y corregir fallos.	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1: Filtrado activo.

- 1.1 Conceptos de filtros.
- 1.2 Filtros estándar y sus parámetros.
- 1.3 Implementación de filtros por medio de amplificadores operacionales y circuitos pasivos.

Tema 2: Osciladores lineales y no lineales.

- 2.1 Concepto de oscilador lineal.
- 2.2 Tipos de osciladores lineales; algunos ejemplos (phase shift, Colpittz, etc.).
- 2.3 Trigger de Schmidt y osciladores no lineales (de relajación).

Tema 3: Conversión analógico digital.

- 3.1 Definición de los parámetros de los conversores AD y DA
- 3.2 Estructura de los principales tipos de conversores, prestaciones y comparación.

Tema 4: Ruido electrónico.

- 4.1 Definición de ruido y fuentes de ruido electrónico: Johnson, shot y flicker.
- 4.2 Cálculo básico de ruido.
- 4.3 Ruido en la conversión ADC y DAC; bits efectivos.

Tema 5: Instrumentación electrónica.

- 5.1 Concepto de acondicionamiento de sensores.
- 5.2 Especificaciones de instrumentación: errores, curvas de calibración.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

La asignatura tienes clases teóricas y de laboratorio

Metodología Presencial: Actividades

GUÍA DOCENTE 2018 - 2019

Presentación de conceptos básicos. El profesor introduce en un concepto o aplicación básica.	CG03, CEN02, CEN05
Problemas de clase. Los alumnos dedican varios minutos a intentar entender y a hacer el problema asignado que trata el concepto explicado por el profesor. Por último, el profesor discute su solución, sin resolverlo por completo.	CG04
Repaso de problemas anteriores. Discusión de los problemas de clase del día anterior.	CG03, CG04, CEN02
Prácticas de laboratorio. En los laboratorios, los alumnos realizarán proyectos (guiados al principio, más libres en adelante); tendrán que diseñar circuitos, montarlos, comprobar el funcionamiento y buscar y corregir fallos.	CG01, CEN05
Metodología No presencial: Actividades	
Repasar los conceptos de clase. Esto se hace terminando los problemas de clase, que obligará a repasar los conceptos presentados por el profesor.	CG03, CEN02
Estudio personal. El alumno usará los recursos a disposición para profundizar los temas vistos en las clases, tanto teóricas como de laboratorio.	CG03, CEN02, CEN05
Tareas . Se asignarán problemas que se discutirán en clase la semana siguiente. Estos problemas presentan cuestiones relacionadas con los conceptos trabajados en clase o de preparación de las prácticas de laboratorio.	CG01, CG04, CEN05

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Clase magistral y presentaciones generales	Resolución en clase de problemas prácticos	Prácticas de laboratorio, trabajo previo e informe posterior	
15,00	15,00	15,00	
HORAS NO PRESENCIALES			
Trabajo autónomo sobre contenidos teóricos por parte del alumno	Trabajo autónomo sobre contenidos prácticos por parte del alumno	Prácticas de laboratorio, trabajo previo e informe posterior	
30,00	30,00	30,00	
CRÉDITOS ECTS: 4,5 (135,00 horas)			

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
---------------------------	-------------------------	------

GUÍA DOCENTE 2018 - 2019

Realización de exámenes: • Evaluación continua: un examen intersemestral y posibles test a lo largo del curso. • Examen Final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita 	65 %
Evaluación de trabajo experimental: • Trabajo de laboratorio	 Se valorará el trabajo previo a las prácticas, el comportamiento del alumno durante las prácticas y los informes técnicos cuando proceda 	35 %

Calificaciones

Convocatoria Ordinaria

- Evaluación continua. Tiene un 20% del peso de la nota; hasta un 10% en los tests.
- Examen final. Tiene un 45% de peso en la nota. Es necesario obtener un mínimo de 4 en este examen para aprobar la asignatura.
- Laboratorio. Tiene un 35% de peso en la nota.

Convocatoria extraordinaria

 Nota = 60% nota del examen extraordinario + 15% nota evaluación continua + 25% nota del laboratorio

Condiciones generales

El laboratorio y la teoría deben aprobarse de forma independiente. No hay convocatoria extraordinaria de laboratorio.

Asistencia a clase

La inasistencia a más del 15% de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a la convocatoria ordinaria.

La asistencia a las prácticas de laboratorio es obligatoria; la no asistencia al laboratorio puede tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria de esta asignatura.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	
Preparación de las pruebas que se realizarán durante las horas de clase		Se avisará
Preparación del Examen Intersemestral	Semana 7	
Preparación del Examen Final	Finales de abril - mayo	
Desarrollo de los proyectos de laboratorios	Todo el curso	Se avisará

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Comer, Comer: "Advanced Electronic Circuit Design", John Wiley & Sons, 2002D.
- M.A. Pérez García et al, "Instrumentación Electrónica", Thomson, 2004

Cronograma

Semana 1

• Repaso de prerrequisitos. Conceptos de filtros

Semana 2

- Filtros; especificaciones e implementación (I)
- Laboratorio 1. Diseño y test de filtro.

Semana 3

• Filtros; especificaciones e implementación (II)

Semana 4

- Osciladores, definición y generalidades-
- Laboratorio 2: verificación del filtro. Presentación y defensa del informe #1

Semana 5

• Osciladores lineales (I).

Semana 6

- Osciladores lineas (II).
- Laboratorio 3: Oscilador lineal. Diseño e implementación.

Semana 7

Examen intersemestral

Semana 8

- Osciladores no lineales (multivibrador).
- Laboratorio: Oscilador, prueba y evaluación. Presentación y defensa del informe #2.

Semana 9

• Conversión Analógico-Digital (I).

Semana 10

- Conversión analógico-digital (II) y digital-analógico.
- Laboratorio: Proyecto (1)

Semana 11

- Ruido electrónico (I)
- Laboratorio: Presentación del diseño de amplificador, medida de características.

Semana 12

- Ruido electrónico (II)
- Laboratorio: Proyecto (2)

Semana 13

• Conceptos de Instrumentación (I). Acondicionamiento, características y especificaciones.

Semana 14

- Conceptos de instrumentacion (II). Errores.
- Laboratorio: Proyecto (3) Presentación y defensa del informe #3

Semana 15

• Repaso y consolidación.