

GRADO EN INGENIERÍA ELECTROMECÁNICA

TRABAJO FIN DE GRADO

Control design of an active suspension system for a
scaled vehicle

Autor: José Esteban Rivero Ríos

Director: Juan Luis Zamora Macho

Madrid

Agosto de 2019

e

AUTHORIZATION FOR DlGITALIZATION, STORAGE AND DlSSEMINATION IN THE
NETWORK OF END-OF-DEGREE PROJECTS, MASTER PROJECTS, DÍSSERTATIONS OR
BACHILLERATO REPORTS

1. Declaration of authorship and accreditation thereoJ.

The author Mr. IMs. José Esteban Rivero Ríos

HEREBY DECLARES that he/she owns the intellectual property rights regarding the piece of work:
Control design of an active suspension system for a scaled vehicle

that this is an original piece of work, and that he/she holds the status of author, in the sense granted by the
Intellectual Property Law.

2. Subject matter and purpose of this assignment.

With the aim of disseminating the aforementioned piece of work as widely as possible using the
University's Institutional Repository the author hereby GRANTS Comillas Pontifical University, on a
royalty-free and non-exclusive basis, for the maximum legal term and with universal scope, the
digitization, archiving, reproduction, distribution and public communication rights, including the right to
make it electronically available, as described in the Intellectual Property Law. Transformation rights are
assigned solely for the purposes described in a) of the following section.

3. Transfer and access terms

Without prejudice to the ownership of the work, which remains with its author, the transfer of
rights covered by this license enables:

a) Transform it in order to adapt it to any technology suitable for sharing it online, as well as
including metadata to register the piece of work and include "watermarks" or any other security
or protection system.

b) Reproduce it in any digital medium in order to be included on an electronic database, including
the right to reproduce and store the work on servers for the purposes of guaranteeing its security,
maintaining it and preserving its format.

e) Communicate it, by default, by means of an institutional open archive, which has open and cost-
free online access.

d) Any other way of access (restricted, embargoed, closed) shall be explicitly requested and
requires that good cause be demonstrated.

e) Assign these pieces ofwork a Creative Commons license by default,
f) Assign these pieces of work a HANDLE (persistent URL). by default.

4. Copyright.

The author, as the owner of a piece of work, has the right to:

a) Have his/her name clearly identified by the University as the author
b) Communicate and publish the work in the version assigned and in other subsequent versions

using any medium.
e) Request that the work be withdrawn from the repository for just cause.
d) Reéeive reliable communication of any claims third parties may make in relation to the work

and, in particular, any claims relating to its intellectual property rights.

5. Duties of the author.

The author agrees to:

a) Guarantee that the commitment undertaken by means of this official document does not infringe
any third party rights, regardless of whether they relate to industrial or intellectual property or
any other type.

b) Guarantee that the content of the work do es not infringe any third party honor, privacy or image
rights. "

e) Take responsibility for all claims and liability, including compensation for any damages, which
may be brought against the University by third parties who believe that their rights and interests
have been infringed by the assignment. '

d) Take responsibility in the event that the institutions are found guilty of a rights infringement
regarding the work subject to assignment.

6. Institutional Repository purposes and functioning.

The work shall be made available to the users so that they may use it in a fair and respectful way with
regards to the copyright, according to the allowances given in the relevant legislation, and for study or
research purposes, or any other legal use. With this aim in mind, the University undertakes the following
duties and reserves the following powers:' \~.

a) The University shall inform the archive users of the permitted uses; however, it shall not
guarantee or take any responsibility for any other subsequent ways the work may be used by
users, which are non-cornpliant with the legislation in force. Any subsequent use, beyond private
copying, shall require the source to be cited and authorship to be recognized, as well as the
guarantee not to use it to gain commercial profit or carry out any derivative works.

b) The University shall not review the content of the works, which shall at all times fall under the
exclusive responsibility of the author and it shall not be obligated to take part in lawsuits on
behalf of the author in the event of any infringement of intellectual property rights deriving from
storing and archiving the works. The author hereby waives any claim against the University due
to any way the users may use the works that is not in keeping with the legislation in force.

e) The University shall adopt the necessary measures to safeguard the work in the future.
d) The University reserves the right to withdraw the work, after notifying the author, in sufficiently

justified cases, or in the event of third party clairns.

Madrid, on .26 of .~\J.g~!?t.?M.~ , .

HEREBY ACCEPTS

Signed .. ~ .

Reasons for requesting the restricted, closed or embargoed access to the work in the Institutíon's

Repository

••

GRADO EN INGENIERÍA ELECTROMECÁNICA

TRABAJO FIN DE GRADO

Control design of an active suspension system for a

scaled vehicle

Autor: José Esteban Rivero Ríos

Director: Juan Luis Zamora Macho

Madrid

Agosto de 2019

Special Thanks:

To Juan Luis for his help and advice.

To my family for supporting throughout all

these years.

Control design of an active suspension system for a scaled

vehicle

Author: Rivero Ríos, José Esteban.

Director: Zamora Macho, Juan Luis.

Collaborating Entity: ICAI – Comillas Pontifical University

1. INTRODUCTION

This project consists of taking a RC car
prototype with a working active suspension
system [ALEX11] from a previous thesis

[JIMÉ16] and upgrading its electronic
hardware with the goal of being able to
implement more complex control strategies
than the hardware was previously capable of.

This project expects to reduce the gap the
Comillas Pontifical University has on this field,
by preparing a working prototype that can be
used during classes or other projects in this
field.

The objectives for this work are the following:

• Update the electronic components of
the car, without hampering the
performance of the active suspension
system.

• Program the necessary drivers in
MATLAB/Simulink for full vehicle
functionality

• Identify the necessary models of the
vehicle in order to design a control
system.

The prototype consists of a Turnigy TD10 kit,
shown in Figure 1, equipped with a custom
designed active suspension system.

Figure 1: Turnigy TD10 touring car kit

The upgraded prototype will be powered by a
Raspberry PI 3 B+ alongside a 4 expansion
boards from the MikroE family of Click boards
enabling use of PWM, IMU, ADC and encoder
capabilities to the Rapsberry Pi.

This new electronic hardware will work
alongside the already installed active
suspension system, a Turnigy XK3650 3900KV
brushless dc motor, a Turnigy Trackstar
1/10th 80A Turbo Electronic speed controller
[MODE19], a 7.2V 2-cell LiPo battery, and four
Sharp infrared sensors.

The ADC and encoder modules will require
programming the driver from scratch, while
the PWM, IMU and RC receiver have existing
drivers that can be easily implemented and
modified if necessary.

2. METHODOLOGY

In order to accomplish the objectives of this
work, the first step was to check the state of
the prototype. After that any old,
incompatible, or faulty hardware was
removed or replaced, work began on installing
the new components onto the car chassis.
After all the new hardware was installed, work
began on preparing and programming the
necessary drivers for correct functionality of
all the hardware on board the car.

Then, work began on identifying the models of
the vehicle. Unfortunately, due to difficulties
in obtaining one model and a general lack of
time, work on designing the necessary
controls was not started.

1. Peripheral choice

The Raspberry Pi is the chosen control unit,
and while it is capable microcomputer it lacks
accessories needed to fully operate the RC car
with its active suspension system. To solve

this 4 expansion boards are used alongside
the Raspberry Pi in order to operate the entire
system. Thanks to MATLAB’s and Simulink’s
support package for the Raspberry Pi, setting
up the necessary communications between
the Raspberry pi and the boards is quite
simple.

The first expansion board is the PWM click
board which handles all the PWM signals need
for the suspension servos, direction servo,
and the Brushless motor. All of this is
controlled though I2C protocol [CIRC16].

The Second expansion board is the ADC3 Click,
which is a 4-channel analogue to digital
converter, which receives all the signals from
the 4 infrared sensors already installed which
are used for the height measurement of the
vehicle. This component also communicates
with the Raspberry through I2C protocol.

Third expansion board is the Counter click,
which takes the phase sensor output from the
brushless motor to count the number of
revolutions the motor makes, as this output
matches a quadrature encoder output. With
this count the model can calculate the true
speed of the car. This board is controlled
through the SPI protocol [MIKE17].

The last expansion board needed is the MPU
IMU Click which is an inertial motion unit
[CHEN94] that has a 3-axis gyroscope
[DEIM31] and accelerometer [MOHA18],
finishing the sensors needed for the correct
operation of the active suspension system.
This board communicates with the Raspberry
PI through SPI protocol as well.

One last electronic component is the FS-A8S
radio control receiver, which communicates
with the Raspberry PI through its serial port.

2. Installation of new hardware

After checking for faulty hardware, the first
step was to remove the old electronic
hardware that will be replaced. In this case it
was an old Arduino based microcontroller and
the old radio control receiver which is
incompatible with the new hardware.

Afterward the installation of new hardware
began, correcting the lack of space on the
chassis by adding an expansion plate to the
chassis, creating a second level where most of

the new components were installed. The
finished result can be seen in figure 2:

Figure 2.: Finished RC car

3. Software setup

After all the new hardware is installed, the
next step starts with setting up all the
necessary software to control the hardware
available on the vehicle

First was setting up the radio control receiver,
in this case a FS-A8S receiver, which uses the
IBUS protocol over the Raspberry Pi’s serial
port. Multiple drone projects use this
communication protocol, so a working code
was available and with some changes, the
component was implemented successfully.

The next component to setup was the PWM
click board, which will control all the installed
motors on the car. This was also simple, as
another project had utilized this board as well,
although more changes were needed for it to
be fully functional. The most important
changes consisted of correctly assigning each
channel to each motor and setting the
servomotor safety limits as it was judged that
the limits were better set, on the module’s
code instead of in the main control code.

The next component configured was the ADC3
click board. This one required the driver to be
coded from scratch. First a configuration
MATLAB .m script was made in order to
initialize all the initial configuration of the
board, as well as loading the required I2C
addresses into memory. Then a Simulink
model was created with 2 main parts: an
initialization phase which oversees proper
initialization of the board, and a main phase,
enabled once the previous phase is complete.
The main phase handles the main operation
loop of the ADC which consists of sequentially
measuring the output of each infrared sensor,
reading the data from the ADC and processing

it to obtain a measurement in volts. The ADC
model also includes the small conversion code
for the infrared sensor.

Then next board to be implemented was the
MPU IMU click, this one also had a working
driver from previous drone projects and was
implemented with some small changes. The
code was also setup to work with an Extended
Kalman Filter (EKF) [SING18] also previously
coded, with a little setup this was also
implemented successfully.

The final board to implement is the Counter
click board. This one also needed to be coded
from scratch and follows the same procedure
as the ADC3 click, a MATLAB .m script file with
all the necessary address and variables, a
Simulink model with two phases, one to
configure the board, and the other for its main
operation. This board’s main operation
consists of counting each revolution the
motor makes, and then each sample time the
code calculates the difference between the
count now and during the last sampling time
to obtain the revolutions per sampling time,
which is then converted to motor RPM and
finally the vehicle’s speed in m/s.

These models are all implemented in a master
Simulink model which is structured into 3
categories: HARDWARE, MONITORIZATION,
and CONTROL. All these sections are tied
together by a data bus that handles all the
variables the model needs to function.

The hardware section contains all the models
that pertain to using a specific type of
hardware, the previously mentioned models
are all included here.

The monitorization section handles all the
needed scopes to view the telemetry data
form the vehicle during operation, relayed
though the data busses.

And lastly, the control section contains the
state machine and the control blocks, these
are implemented as MATLAB function blocks.
The state machine guides the code through 5
self-explanatory states: Boot, Sensor
calibration, operation point set, standby,
locked motors and operation. The control
block handles basic operation like relaying
receiver commands to the motors as well as

the control strategies implemented and other
control critical code like the EKF.

This master Simulink model is complimented
by a library of .m scripts that contain all the
necessary data to initialize the model. These
are led by the main configuration script that
when run, loads all the other scripts in order,
setting up everything from control
initialization, to the creation of the extremely
useful data busses.

One last thing before the identification of the
models, is the creation of a simple speed PI
regulator, to ensure that during the tests the
speed of the car does not fluctuate. This
regulator was made by simply setting up a
simple PI, changing the K and Ti between test
until a satisfactory result was achieved.

4. Identifying the vehicle’s models

For the chassis to achieve stability, the active
suspension system must be able to at least
control the following variables:

• Pitch angle of the vehicle

• Roll angle of the vehicle

• The vertical acceleration (height) of
the vehicle

Therefore, the project needs at least those
models before the control can be designed.

To accomplish this a set of 3 test were created.
The tests consisted of using a PRBS signal
[JACK71] to control the motions of the active
suspension system with the goal of only
having one type of movement, e.g. for the
pitch test the system only changed the pitch
angle, etc. The measurements from the IMU
were recorded and then processed using
MATLAB’s system identification toolbox to
calculate a transfer function describing the
model.

The results were as follows:

• The pitch model was identified with
an 87.96% match

• The roll model was identified with a
92.57% match

• The height model was not identified
as its match was around the 39%

Therefore, the height test needed redesigning,
work began on applying a least squares
estimation method [GIOR85] when the
project ran out of time, and as such the height
model was not identified nor the controls
designed.

3. RESULTS

The results of this work are composed of the
working prototype alongside the Simulink
model that controls it.

The electronics of the car have been fully
upgraded, with no drawback to the active
suspension system, and while the car is
heavier the active suspension system is more
than powerful enough so that this is not an
issue.

The Simulink model created allows for full
control of the vehicle in manual mode using
the joysticks on the transmitter to manually
control the pitch and roll angles, full access to
all the sensors and measurements the
electronic system takes, and finally the
necessary framework so that a control
scheme can be easily implemented without
many changes needed to the model as a
whole.

4. CONCLUSIONS

In the end only 2 of the main objectives of this
work were completed, both of which involved
completing the RC car prototype and its
control model, so that the vehicle is
operational.

The last objective was not strictly necessary as
the manual operation shows the full
functionality of the prototype and previous
work has demonstrated that this active
suspension system is effective in stabilizing
the chassis when driving through irregular
terrain.

5. References

[ALEX11] C. Alexandru and P. Alexandru, "A
comparative analysis between the vehicles’,"
INTERNATIONAL JOURNAL OF MECHANICS,
vol. 5, no. 4, p. 8, 2011.

[JIMÉ16] F. d. B. Jiménez Valverde, "Diseño de
un sistema de suspensión activa para un

vehículo a escala," Trabajo de fin de grado,
ICAI, Universidad Pontificia Comillas, Madrid,
2016.

[AZUM19] T. Azuma, "What Is Traction

Control And How Does It Work? - CAR FROM

JAPAN," 25 Feburary 2019. [Online].

Available:

https://carfromjapan.com/article/car-

maintenance/traction-control-system/.

[Accessed 25 August 2019].

[MODE19] Modelflight, "What is an Electronic
Speed Controller and how does it differ from
brushed to brushless motors?," Modelflight,
06 February 2019. [Online]. Available:
https://www.modelflight.com.au/blog/electr
onic-speed-controllers. [Accessed 25 August
2019].

[MIKE17] MIKEGRUSIN, "Serial Peripheral
nterface (SPI) - Learn.sparkfun.com,"
SparkFun, 2017. [Online]. Available:
https://learn.sparkfun.com/tutorials/serial-
peripheral-interface-spi/all. [Accessed 25
August 2019].

[CHEN94] J.-H. Chen, S.-C. Lee and D. B. DeBra,
"Gyroscope free strapdown inertial
measurement," Journal of Guidance, Control,
and Dynamics, vol. 17, no. 2, pp. 286-290,
1994.

[CHEN94] J.-H. Chen, S.-C. Lee and D. B. DeBra,
"Gyroscope free strapdown inertial
measurement," Journal of Guidance, Control,
and Dynamics, vol. 17, no. 2, pp. 286-290,
1994.

[MOHA18] Z. Mohammed, I. M. Elfadel and M.
Rasras, "Monolithic Multi Degree of Freedom
(MDoF) Capacitive MEMS Accelerometers,"
Micromachines, vol. 9, no. 11, p. 602, 2018.

[DEIM31] R. F. Deimel, "Mechanics of the
Gyroscope," Nature, vol. 128, no. 3225, pp.
289-289, 1931.

[JACK71] P. A. Jackson, "PRBS cross-
correlation measurements by hybrid
computational techniques," The Computer
Journal, vol. 14, no. 1, pp. 49-54, 1971.

[GIOR85] A. A. Giordano and F. M. Hsu, Least
Square Estimation with Applications to Digital
Signal Processing, New York: John Wiley &
Sons, Inc., 1985.

Control de un sistema de suspensión activa para un

vehículo a escala

Autor: Rivero Ríos, José Esteban.

Director: Zamora Macho, Juan Luis.

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

1. INTRODUCCIÓN

Este proyecto consiste en tomar un prototipo
de coche RC con un sistema de suspensión
activa [ALEX11] de TFG previo [JIMÉ16] y
actualizar su hardware electrónico con el
objetivo de poder implementar estrategias de
control más complejas de las que el hardware
era capaz anteriormente.

Este proyecto espera reducir la brecha que la
Universidad Pontificia Comillas tiene en este
campo, al preparar un prototipo funcional que
pueda usarse durante las clases u otros
proyectos en este campo.

Los objetivos de este trabajo son los
siguientes:

• Actualizar los componentes
electrónicos del automóvil, sin
obstaculizar el rendimiento del
sistema de suspensión activa.

• Programar los controladores
necesarios en MATLAB / Simulink
para la funcionalidad completa del
vehículo

• Identificar los modelos necesarios del
vehículo para diseñar un sistema de
control.

El prototipo consiste en un kit Turnigy TD10,
que se muestra en la Figura 1, equipado con
un sistema de suspensión activa diseñado a
medida.

Figura 1.: Kit de turismos Turnigy TD10

El prototipo actualizado estará controlado por
una Raspberry PI 3 B+ junto con 4 tarjetas de
expansión de la familia MikroE de tarjetas
Click que permiten el uso de PWM, IMU, ADC
y encoder a la Rapsberry Pi.

Este nuevo hardware electrónico funcionará
junto con el sistema de suspensión activa ya
instalado, un motor de CC sin escobillas
Turnigy XK3650 3900KV, un controlador de
velocidad electrónico (ESC en inglés)
[MODE19] Turnigy Trackstar Turbo 1 / 10th
80ª, una batería LiPo de 7.2V de 2 celdas, y
cuatro sensores infrarrojos de distancia Sharp.

Los módulos ADC y codificador requerirán
programar el controlador desde cero,
mientras que el PWM, IMU y receptora de RC
tienen controladores existentes que pueden
implementarse y modificarse fácilmente si es
necesario.

2. METODOLOGÍA

Para lograr los objetivos de este trabajo, el
primer paso fue verificar el estado del
prototipo. Una vez desinstalado/remplazado
todo el hardware viejo o defectuoso, se
comenzó a instalar los nuevos componentes al
chasis del coche. Después de instalar todo el
nuevo hardware, se comenzó a trabajar en la
preparación y programación de los
controladores necesarios para la correcta

funcionalidad de todo el hardware a bordo del
automóvil.

Luego, se comenzó a trabajar para identificar
los modelos del vehículo.
Desafortunadamente, debido a las
dificultades para obtener un modelo en
específico y una falta de tiempo, no se
comenzó a trabajar en el diseño de los
controles necesarios.

1. Elección de periféricos

La Raspberry Pi es la unidad de control elegida
para este proyecto, y aunque es un
microordenador capaz, carece de los
accesorios necesarios para operar
completamente el coche RC con su sistema de
suspensión activa. Para resolver esto, se
utilizan 4 tarjetas de expansión junto con a la
Raspberry Pi para operar todo el sistema.
Gracias al paquete de soporte de MATLAB y
Simulink para Raspberry Pi, configurar las
comunicaciones necesarias entre la placa y las
tarjetas es muy simple.

La primera tarjeta de expansión es la PWM
Click que maneja todas las señales PWM
necesarias para los servos de suspensión, el
servo de dirección y el motor sin escobillas.
Todo esto se controla a través del protocolo
I2C [CIRC16].

La segunda tarjeta de expansión es el ADC3
Click, que es un convertidor analógico/digital
de 4 canales, que recibe todas las señales de
los 4 sensores infrarrojos ya instalados
utilizados para medir la altura del vehículo.
Este componente también se comunica con la
Raspberry a través del protocolo I2C.

La tercera tarjeta de expansión es el Counter
Click, que toma la salida del sensor de fase del
motor sin escobillas para contar el número de
revoluciones que hace el motor, ya que esta
salida coincide con una salida del codificador
de cuadratura. Con este recuento, el modelo
puede calcular la velocidad real del automóvil.
Esta tarjeta se controla mediante el protocolo
SPI [MIKE17].

La última tarjeta de expansión necesaria es el
MPU IMU Click, que es una unidad de
movimiento inercial (Inertial Motion Unit en
inglés) [CHEN94] que tiene un giroscopio de 3
ejes [DEIM31] y un acelerómetro de 3 ejes
[MOHA18], terminando los sensores

necesarios para el correcto funcionamiento
del sistema de suspensión activa. Esta tarjeta
también se comunica con la Raspberry PI a
través del protocolo SPI.

Un último componente electrónico es el
receptor de radio control FS-A8S, que se
comunica con el Raspberry PI a través de su
puerto serie.

2. Instalación de nuevo hardware

Después de verificar el hardware defectuoso,
el primer paso fue desinstalar el hardware
electrónico antiguo que será reemplazado. En
este caso, era un antiguo microcontrolador
basado en Arduino y el antiguo receptor de
radio control que es incompatible con el
nuevo hardware.

Luego comenzó la instalación del nuevo
hardware, corrigiendo la falta de espacio en el
chasis instalando una placa de expansión al
chasis, creando un segundo nivel donde se
instalaron la mayoría de los nuevos
componentes. El resultado final se puede ver
en la figura 2:

Figura 2.: coche RC terminado

3. Configuración del software

Después de instalar todo el nuevo hardware,
el siguiente paso comienza con la
configuración de todo el software necesario
para controlar el hardware disponible en el
vehículo

Primero fue configurar el receptor de radio
control, en este caso un receptor FS-A8S, que
utiliza el protocolo IBUS a través del puerto
serie de la Raspberry Pi. Varios proyectos de
drones utilizan este protocolo de
comunicación, por lo que un controlador

estaba disponible y con algunos cambios, el
componente se implementó con éxito.

El siguiente componente por configurar fue la
tarjeta de PWM, que controlará todos los
motores instalados en el automóvil. Esto
también fue simple, ya que otro proyecto
también había utilizado esta tarjeta, aunque
se necesitaban más cambios para que fuera
completamente funcional. Los cambios más
importantes consistieron en asignar
correctamente cada canal a cada motor y
establecer los límites de seguridad del
servomotor, ya que se consideró que sería
más seguro establecer los limites en el código
del módulo en lugar del código de control
principal.

El siguiente componente configurado fue la
tarjeta ADC3 Click. Esta requirió que el
controlador se programará desde cero.
Primero se realizó un script de configuración
MATLAB .m para inicializar toda la
configuración inicial de la tarjeta, así como
cargar las direcciones I2C requeridas en la
memoria. Luego se creó un modelo Simulink
con 2 partes principales: una fase de
inicialización que supervisa la inicialización
adecuada de la tarjeta y una fase principal,
habilitada una vez que se completa la fase
anterior, que maneja el bucle de operación
principal del ADC que consiste en medir
secuencialmente la salida de cada sensor
infrarrojo, leer los datos del ADC, y
procesarlos para obtener una medición en
voltios. El modelo ADC también incluye el
pequeño código de conversión para el sensor
infrarrojo.

Luego, la siguiente tarjeta que se implementó
fue el MPU IMU Click, esta también tenía un
controlador funcional usado en proyectos de
drones anteriores y se implementó con
algunos pequeños cambios. El código también
se configuró para funcionar con un Filtro de
Kalman Extendido (EKF – Extended Kalman
Filter en inglés) [SING18] también
programado previamente, con una pequeña
configuración esto también se implementó
con éxito.

La placa final para implementar es la tarjeta
Counter click. Esta también necesitaba ser
programada desde cero y sigue el mismo
procedimiento que el caso de la ADC3 Click,
un archivo de script MATLAB .m con todas las

direcciones y variables necesarias, un modelo
Simulink con dos fases, una para configurar la
tarjeta y la otra para su operación principal. La
operación principal de esta placa consiste en
contar cada revolución que hace el motor, y
luego, cada tiempo de muestreo, el código
calcula la diferencia entre el recuento ahora y
durante el último tiempo de muestreo para
obtener las revoluciones por tiempo de
muestreo del motor, que luego se convierte a
RPM del motor y finalmente a la velocidad del
vehículo en m / s.

Todos estos modelos se implementan en un
modelo maestro de Simulink que se
estructura en 3 categorías: HARDWARE,
MONITORIZACIÓN y CONTROL. Todas estas
secciones están unidas por un bus de datos
que maneja todas las variables que el modelo
necesita para funcionar.

La sección de hardware contiene todos los
modelos relacionados con el uso de un tipo
específico de hardware, todos los modelos
mencionados anteriormente se incluyen aquí.

La sección de monitorización maneja todos los
scopes necesarios para ver los datos de
telemetría del vehículo durante la operación,
transmitidos a través de los buses de datos.

Y, por último, la sección de control contiene la
máquina de estado y los bloques de control
utilizados. estos se implementan como
bloques de función MATLAB. La máquina de
estado guía el código a través de 5 estados:
arranque, calibración de los sensores, punto
de operación, espera, motores bloqueados y
operación. El bloque de control maneja la
operación básica como transmitir comandos
del receptor a los motores, así como las
estrategias de control implementadas y otros
códigos críticos del control como el EKF.

Este modelo maestro de Simulink se
complementa con una biblioteca de scripts .m
que contienen todos los datos necesarios para
inicializar el modelo. Estos están dirigidos por
el script de configuración principal que,
cuando se ejecuta, carga todos los otros
scripts en orden, configurando todo, desde la
inicialización del control, hasta la creación de
los buses de datos extremadamente útiles.

Una última cosa antes de la identificación de
los modelos es la creación de un regulador PI

de velocidad simple, para asegurar que
durante las pruebas la velocidad del
automóvil no fluctúe. Este regulador se realizó
simplemente configurando un PI simple,
cambiando el K y el Ti entre pruebas hasta que
se logró un resultado satisfactorio.

4. Identificación de los modelos del vehículo.

Para que el chasis logre estabilidad, el sistema
de suspensión activa debe poder al menos
controlar las siguientes variables:

• Ángulo de cabeceo del vehículo
• Ángulo de balanceo del vehículo
• La aceleración vertical (altura) del

vehículo.

Por lo tanto, el proyecto necesita al menos
esos modelos antes de poder diseñar el
control.

Para lograr esto, se creó un conjunto de 3
pruebas. Las pruebas consistieron en utilizar
una señal PRBS [JACK71] para controlar los
movimientos del sistema de suspensión activa
con el objetivo de tener solo un tipo de
movimiento durante cada ensayo, por
ejemplo, para la prueba de cabeceo, el
sistema solo cambió el ángulo de cabeceo, etc.
Las mediciones de la IMU se registraron para
luego procesarlas utilizando la herramienta de
identificación de sistemas de MATLAB para
calcular una función de transferencia que
describa el modelo.

Los resultados fueron los siguientes:

• El modelo de cabeceo se identificó
con una coincidencia del 87.96%

• El modelo de balanceo se identificó
con una coincidencia del 92.57%

• El modelo de altura no se identificó ya
que su coincidencia era de alrededor
del 39%.

Por lo tanto, la prueba de altura necesitaba un
nuevo diseño, el trabajo comenzó a aplicar un
método de estimación de mínimos cuadrados
[GIOR85] cuando el proyecto se quedó sin
tiempo, y como tal el modelo de altura no fue
identificado ni los controles diseñados.

3. RESULTADOS

Los resultados están compuestos por el
prototipo terminado y su modelo de Simulink
que lo controla.

La electrónica del automóvil se ha actualizado
por completo, sin inconvenientes para el
sistema de suspensión activa, y aunque el
automóvil es más pesado, el sistema de
suspensión activa es más potente de lo
necesario como para que esto no sea un
problema.

El modelo Simulink creado permite el control
total del vehículo en modo manual utilizando
los joysticks en el transmisor para controlar
manualmente los ángulos de cabeceo y
balanceo, da acceso completo a todos los
sensores y mediciones que toma el sistema
electrónico, y finalmente el marco necesario
para que un esquema de control se puede
implementar fácilmente sin muchos cambios
necesarios para el modelo en su conjunto.

4. CONCLUSIONES

Al final, solo se completaron 2 de los objetivos
principales de este trabajo, los cuales
implicaron completar el prototipo del
automóvil RC y su modelo de control, de
modo que el vehículo esté operativo.

El último objetivo no era estrictamente
necesario ya que la operación manual
muestra la funcionalidad completa del
prototipo y el trabajo previo ha demostrado
que este sistema de suspensión activa es
efectivo para estabilizar el chasis cuando se
conduce por terreno irregular.

5. REFERENCIAS

[ALEX11] C. Alexandru and P. Alexandru, "A
comparative analysis between the vehicles’,"
INTERNATIONAL JOURNAL OF MECHANICS,
vol. 5, no. 4, p. 8, 2011.

[JIMÉ16] F. d. B. Jiménez Valverde, "Diseño de
un sistema de suspensión activa para un
vehículo a escala," Trabajo de fin de grado,
ICAI, Universidad Pontificia Comillas, Madrid,
2016.

[AZUM19] T. Azuma, "What Is Traction

Control And How Does It Work? - CAR FROM

JAPAN," 25 Feburary 2019. [Online].

Available:

https://carfromjapan.com/article/car-

maintenance/traction-control-system/.

[Accessed 25 August 2019].

[MODE19] Modelflight, "What is an Electronic
Speed Controller and how does it differ from
brushed to brushless motors?," Modelflight,
06 February 2019. [Online]. Available:
https://www.modelflight.com.au/blog/electr
onic-speed-controllers. [Accessed 25 August
2019].

[MIKE17] MIKEGRUSIN, "Serial Peripheral
nterface (SPI) - Learn.sparkfun.com,"
SparkFun, 2017. [Online]. Available:
https://learn.sparkfun.com/tutorials/serial-
peripheral-interface-spi/all. [Accessed 25
August 2019].

[CHEN94] J.-H. Chen, S.-C. Lee and D. B. DeBra,
"Gyroscope free strapdown inertial
measurement," Journal of Guidance, Control,
and Dynamics, vol. 17, no. 2, pp. 286-290,
1994.

[CHEN94] J.-H. Chen, S.-C. Lee and D. B. DeBra,
"Gyroscope free strapdown inertial
measurement," Journal of Guidance, Control,
and Dynamics, vol. 17, no. 2, pp. 286-290,
1994.

[MOHA18] Z. Mohammed, I. M. Elfadel and M.
Rasras, "Monolithic Multi Degree of Freedom
(MDoF) Capacitive MEMS Accelerometers,"
Micromachines, vol. 9, no. 11, p. 602, 2018.

[DEIM31] R. F. Deimel, "Mechanics of the
Gyroscope," Nature, vol. 128, no. 3225, pp.
289-289, 1931.

[JACK71] P. A. Jackson, "PRBS cross-
correlation measurements by hybrid
computational techniques," The Computer
Journal, vol. 14, no. 1, pp. 49-54, 1971.

[GIOR85] A. A. Giordano and F. M. Hsu, Least
Square Estimation with Applications to Digital
Signal Processing, New York: John Wiley &
Sons, Inc., 1985

-12-

Control design of an active suspension system for a

scaled vehicle

Report

Author: José Esteban Rivero Ríos

Director: Juan Luis Zamora Macho

Madrid

August 2019

-13-

TABLE OF CONTENTS

Part 1: Report ... 1

Chapter1: Introduction ... 2

1.1. State of the Art .. 3

1.2. Work motivation .. 5

1.3. Objectives .. 5

1.4. Methodology / Designed Solution ... 5

1.5. Resources / Materials applied ... 6

Chapter 2: Description of mechanical components ... 7

2.1. RC Prototype chassis: Turnigy TD10 .. 7

2.2. Mechanical design of the active suspension system... 7

2.2.1. Front and rear shelves .. 9

2.2.2. Semi cylinder acting as the servo’s arm ... 10

2.2.3. Actuator arms ... 10

2.3. Servomotors Installed .. 11

2.4. Motor, ECS Installed .. 12

2.5. Infrared sensors ... 15

2.6. Testing tracks ... 19

2.7. Pololu RP5 Expansion plate ... 20

Chapter 3: Electronic hardware components installation and software setup 21

3.1. RASPBERRY PI 3 B+ .. 21

3.2. MikroE Click boards ... 22

3.2.1. Pi 3 Shield Click, Shuttle Click and MikroBUS Shuttle boards 22

3.2.2 ADC3 Click .. 24

3.2.3 PWM Click .. 26

3.2.4. Counter Click ... 28

3.2.5. MPU IMU Click .. 30

3.3. PI EzConnect .. 31

3.4. Receiver and transmitter combo ... 32

3.4.1. Flysky FS-A8S receiver & FS-I6S transmitter combo..................................... 32

https://upcomillas-my.sharepoint.com/personal/201306734_alu_comillas_edu/Documents/Grado%20IEM/2018-2019/TFG/documentos/Jose%20Rivero%20-%20TFG%20Memoria%20FINAL.docx#_Toc18089589

-14-

3.5. Finished RC car... 34

Chapter 4: Obtaining the models ... 36

4.1. Model Tests ... 36

4.1.1. Pitch test and plant calculation .. 37

4.1.2. Roll test and plant calculation .. 41

4.1.2. Roll test and plant calculation .. 43

Chapter 6: Conclusions ... 45

Chapter 7: Future developments ... 46

References .. 47

Part 2: Economic analysis ... 49

Chapter 1: Economic Analysis... 50

Part 3: Annexes ... 51

Chapter 1: CONFIG_RC_CAR.m.. 52

Chapter 2: CONFIG_MCP3428.m .. 57

Chapter 3: CONFIG_LS7366R.m.. 59

Chapter 4: CONTROL UPDATE FUNCTION .. 60

Chapter 5: STATE MACHINE UPDATE FUNCTION ... 67

https://upcomillas-my.sharepoint.com/personal/201306734_alu_comillas_edu/Documents/Grado%20IEM/2018-2019/TFG/documentos/Jose%20Rivero%20-%20TFG%20Memoria%20FINAL.docx#_Toc18089627
https://upcomillas-my.sharepoint.com/personal/201306734_alu_comillas_edu/Documents/Grado%20IEM/2018-2019/TFG/documentos/Jose%20Rivero%20-%20TFG%20Memoria%20FINAL.docx#_Toc18089629

-15-

TABLE OF FIGURES

Figure 1.1.: Mercedes-Benz’s Active Body Control system concept 4

Figure 1.2.: BOSE’s bulky Linear electromagnetic motors ... 4

Figure 2.1.: Turnigy TD10 Kit and specs. .. 7

Figure 2.2.: Common active suspension setup. .. 8

Figure 2.3.: Active suspension system installed on the Prototype. 8

Figure 2.4.: Front shelf render. ... 9

Figure 2.5.: Rear shelf render. .. 9

Figure 2.6.: Servo arm render. .. 10

Figure 2.7.: Actuator arm render. ... 11

Figure 2.8.: Turnigy 380mg Micro servomotor. ... 12

Figure 2.9.: Turnigy XK3650 3900KV motor ... 12

Figure 2.10.: Sensored brushless wire specifications ... 13

Figure 2.11.: Turnigy Trackstar 1/10th 80A Turbo Sensored ESC with specs 13

Figure 2.12.: Turnigy TrackStar Turbo and Waterproof ESC Programming Box with

available options. .. 14

Figure 2.13.: Sharp GP2Y0A51SK0F infrared sensor .. 15

Figure 2.14.: Infrared sensor measurement timing ... 15

Figure 2.15.: Voltage output vs Distance in cm from the sensor 16

Figure 2.16.: Look up table setup. .. 17

Figure 2.17.: Infrared sensor’s Simulink model. ... 17

Figure 2.18.: Front bumper render ... 18

Figure 2.19.: The high bumps testing tracks aligned, for regular bumpy terrain. 19

Figure 2.20.: The high bumps testing tracks misaligned, for Irregular bumpy terrain. . 19

Figure 2.21.: Pololu RP5/Rover 5 Expansion Plate. .. 20

Figure 3.1.: Raspberry Pi 3 B+ ... 21

Figure 3.2.: PI 3 Shield click .. 22

Figure 3.3.: Shuttle click on the left, mikroBUS Shuttle to the right. 23

Figure 3.4.: ADC 3 Click board .. 24

Figure 3.7.: ADC configuration model .. 25

Figure 3.6.: ADC read model ... 25

-16-

Figure 3.7.: PWM Click board. .. 26

Figure 3.8.: PWM signal diagram .. 27

Figure 3.9.: PWM control model .. 27

Figure 3.10.: Counter Click board ... 28

Figure 3.11.: Motor phase sensors ... 28

Figure 3.12.: Model for initializing the counter board. .. 29

Figure 3.13.: Model for Counter processing ... 30

Figure3.14.: MPU IMU click board.. 30

Figure 3.15.: Pi-EzConnect shield ... 31

Figure 3.16.: FS-A8S receiver .. 32

Figure 3.17.: PPM frame scheme ... 33

Figure 3.18.: FS-I6S transmitter .. 33

Figure 3.19.: Finished RC car .. 34

Figure 4.1.: Simulink model used to test for the necessary transfer functions 37

Figure 4.2.: Pitch test results, calibration time section omitted 38

Figure 4.3.: Pitch data import ... 38

Figure 4.4.: Prepared Pitch data ... 39

Figure 4.5.: Identification toolbox .. 39

Figure 4.6.: Process models settings and results for pitch ... 40

Figure 4.7.: Simulated Pitch output vs Measured Pitch output. 40

Figure 4.8.: Roll test results, calibration time section omitted 41

Figure 4.9.: Prepared Roll data ... 41

Figure 4.10.: Process models settings and results for roll .. 42

Figure 4.11.: Simulated Roll output vs Measured Roll output. 42

Figure 4.12.: Height test results, calibration time section omitted 43

Figure 4.13.: Prepared height data ... 43

Figure 4.14.: Process models settings and results for height ... 44

-1-

PART 1: REPORT

-2-

CHAPTER1: INTRODUCTION

Since the creation of the first internal combustion engine powered vehicle, and the

subsequent creation of the automotive industry, Engineers have always strived to design

vehicles to be, faster, safer, more efficient and comfortable over the years. Driven by

this wish to create the best transportation experience, engineers have added new

systems and features to vehicles that there is no comparison between them and the first

models in 1885. The latest of these new features is autonomous driving, which as its

name implies, looks to replace the driver with specialized hardware and software to

allow its passengers to relax, or get some work done while the vehicle takes them to

their next destination.

While this concept is not a new one, in the last decade there have been enormous

advances in the field, spearheaded by Google in 2015-2016, today some high-end, luxury

models have some type of autonomous driving features, with more complete

prototypes on the way. The most complete experience belonging to tesla, which in early

2019 upgraded their autopilot system to a near full-self driving system although still

requiring the driver to have their eyes on the road due to safety regulations. With a

possible new paradigm shift in the automotive sector, some companies like ClearMotion

have started to focus on the main subject of this work, active suspension systems, with

the idea to complement the rise of self-driving cars. Once driving is out of the equation,

most passengers will wish to partake on other activities during their commute, such as

work, reading, or maybe simply watch the scenery pass by, and as many would agree,

having bumps, potholes or any disturbances to a smooth drive can disturb any of these

activities highlighting the significance of these systems.

There are 3 types of suspension: passive, semi-active, and active. Traditional suspension

systems are passive in nature, they receive the energy from any bumps and other

disturbances, in order to dampen them reducing their effect on the chassis of the vehicle

but not being able to fully eliminate them. An intermediate point would be semi-active

system that changes the dampening depending on the road conditions as picked by an

array of sensors, with the goal of adjusting the right amount of dampening to every

situation. Finally, Active suspension systems have actuator allowing them to fight

against any changes in the pitch, roll, or elevation of the chassis reaching a higher degree

of stability, unlike passive systems which can only absorb energy and redirect it, active

systems can also add more thanks to their actuators allowing them to counteract their

effects [ALEX11], [SHIR19].

This project will attempt to upgrade the electronics of an RC car of a previous thesis

[JIMÉ16], ensuring correct functionality current installed active suspension system with

the new hardware, creating a new Simulink model to take full advantage of the newly

added hardware, and applying a simple control strategy to finish.

-3-

1.1. State of the Art

Ways to increase the stability of cars have always been in the forefront of engineers’

minds, whether to Increase performance on the racing track, or in unforgiving irregular

terrain, or to simply increase safety and control of their vehicles. Once electronics

started to shrink and it became viable for them to be embedded in multiple systems, the

automotive sector was no different. Perhaps one of the more common types of ESC

(Electronic Stability Control) in today’s cars is the Traction Control System or TCS

[AZUM19], which detects possible losses in traction and automatically applies brakes or

cuts engine power to prevent them, increasing stability and safety during the ride.

Active suspension systems operate differently, instead of changing the user’s input they

actively change parts of the suspension to counter any unwanted force or disturbances

that may occur during driving. One of the first examples of an active suspension system

in consumer vehicles came in the form of the SC-CAR (or Citroën’s Active Roll control

system in English) in Citroën’s Xantia Activa model in 1994, and consisted of an active

Anti-Roll bars using a hydraulic system that stiffens or loosens the Anti-Roll bar

depending on instructions from the ESC, fighting the roll of the car during turns

increasing stability, but only for the roll of the vehicle.

The first complete active suspension system was introduced in 1999 with Mercedes-

Benz’s Active Body Control (ABC) introduced in their Mercedes-Benz CL-Class C215.

Their ABC system consisted of telescopic hydraulic actuators that increase or lower the

height of each wheel depending on the wide array of sensors in wide array of sensors

on the vehicle, keeping the vehicle level. The system also allowed for height adjustable

suspension and self-leveling suspension with user selectable profiles to adapt the

suspension depending on the requirements of the drive and the comfort of the user,

allowing for better fuel consumption and handling thanks to a better adjusted

aerodynamic profile. Later, Mercedes-Benz would introduce the concept of PRE-SCAN

suspension, taking the system of Active Body Control and adding LIDAR sensors to

anticipate bumps or potholes on the road, allowing the vehicle to pre-emptively adjust

the suspension instead of simply reacting to it once it reaches it.

-4-

Figure 1.1.: Mercedes-Benz’s Active Body Control system concept

The PRE-SCAN + ABC concept would later evolve into the Magic Body Control system

first seen in Mercedes-Benz’s S-Class (W222) model released in 2013. Using a stereo

camera instead of LIDAR technology, the Magic body control system can scan up to 15m

of the road ahead of the vehicle and adjusts the system accordingly.

Mercedes-Benz’s hydraulic actuators are not the only active suspension system around.

BOSE has been working on Project Sound which had its first unveiling in 2004 installed

in a Lexus LS 400, their system replaces the typical shock absorbers with a linear

electromagnetic motors (LEM), thanks to their speed, a sophisticated sensor system to

scan the road ahead and a sophisticated control system BOSE’s system makes any road

bumps, tilting due to braking or acceleration virtually un noticeable, to the point of

looking unreal in their video showcasing the system. Unfortunately, BOSE was unable to

reach production status for this system due to the economic recession of 2008 and

coupled with the fact that their LEM were bulky and expensive to make.

Figure 1.2.: BOSE’s bulky Linear electromagnetic motors

ClearMotion would later buy Project Sound, combining BOSE’s road sensing and control

software with their own active valve dampeners, replacing BOSE’s linear

-5-

electromagnetics motors. Their digital chassis system is set to reach mass production in

2019 With the goal of targeting the autonomous vehicle market.

1.2. Work motivation

The main motivation for this project is to have a working active suspension system for

the advance control classes in the post-grad programs of the university, creating more

interest in a field which shows a lot of promise in the coming years, especially for

consumers of autonomous vehicles.

This project will take the active suspension prototype made in a previous thesis [JIMÉ16]

and update its electronic hardware with the goal of allowing more sophisticated control

schemes to be implemented on the prototype, and greater ease of use of the prototype

in future investigations.

1.3. Objectives

• Update the electronic control hardware installed in the prototype, without

affecting the active suspension system installed.

• Setup a Simulink model that allows the newly installed hardware to operate the

entirety of the RC car effectively allowing for more sophisticated control

schemes to be implemented.

• Setup a basic control system to test the active suspension system in the RC car

with the new hardware.

1.4. Methodology / Designed Solution

First to remove the old electronic hardware installed onto the prototype car, mainly the

old Ardupilot microprocessor and the Walkera receiver. Then all mechanical

components of the prototype are checked for faults, ensuring that all mechanical

aspects of the prototype are working properly.

Then an expansion plate is installed to provide more space for the new electronic

components to be installed, alongside all the necessary cables. Each new component is

then tested and calibrated.

Then the real models are obtained by running the appropriate tests and using MATLAB’s

system identification toolbox. Once the models are identified, appropriate control

strategies will be designed to achieve a smooth operation of the active suspension

system, leading to a stabilized chassis for the prototype.

-6-

Once the controls are in place, a final round of tests are made in order to collect the

results of the project and reach a conclusion.

1.5. Resources / Materials applied

• Software

o MATLAB 2018b

o Simulink

o PuTTY

• Hardware

o Computer with the previously mentioned software

o Turnigy TD10 RC touring Car chassis, with Turnigy motor and ESC and

installed with the previous active suspension system design and infrared

sensors

o LiPo Battery 2-cell battery with voltage regulator for Raspberry PI

o FlySky Radio control transmitter with corresponding receptor

o Raspberry PI with a 16gb SD card with the MathWorks Raspbian OS image

o PI-Ez Connect Shield board

o PI click Shield board

o ADC click board

o Counter Click board

o PWM click board

o IMU click Board

o Pololu Expansion plate

-7-

CHAPTER 2: DESCRIPTION OF MECHANICAL

COMPONENTS

2.1. RC Prototype chassis: Turnigy TD10

The Radio control car kit chosen for the project is the Turnigy TD10 touring car Kit, a

chassis designed for hobbyists that wish to set up their vehicle for a fraction of the cost

of a new complete RC car setup. The kit consists of the chassis for the car complete with

a transmission and suspension system and space for the battery, brushless motor, ESC,

direction servo, and a microprocessor to control it all.

Figure 2.1.: Turnigy TD10 Kit and specs.

This kit was also chosen for its sports design over a more all-terrain type vehicle, as those

vehicles have suspension better suited for irregular terrain and the changes to the

suspension would not be as noticeable. It also has the advantage of having a suspension

system like a normal car, making the project more appropriate for a consumer release.

2.2. Mechanical design of the active suspension system

As mentioned in the previous thesis on this project, the active suspension design is a bit

unconventional. Typical active suspension setups for RC cars place the servos parallel to

the floor the servos taking the weight of the car radially. The setup then uses small

plastic pieces attached to the servo to move the shock coils up and down, changing the

wheel height to adapt to the terrain, as shown in the image below [reference to image]

-8-

Figure 2.2.: Common active suspension setup.

Unfortunately, a stress analysis of this setup shows that if the car were to take a

significant bump or takes multiple bumps at a decent cruise speed the servo’s gears will

take most of the shock, if they do not break outright, the repetitive stress would fatigue

the parts enough for them to be more prone to failure in the future. That’s not

mentioning the fact that the servo arms could begin to warp after enough abuse from

irregular terrain any decent speed, this is especially important this time around as the

new hardware installed onto the car increases its weight enough to make this a

significant problem. This design is only useful for smooth tracks designed for racing,

looking to increase the stability of the vehicle during turns and as such does not consider

these drawbacks too significant.

To solve this, the designed proposed in the previous report uses a semi cylinder design

which allows the servomotor axis to be perpendicular to the ground, absorbing any

stress axially instead of radially, protecting the servo’s gears as the stress passes onto

the chassis which is more than capable of absorbing these quick shocks. The semi

cylinder parts are also larger and work axially, avoiding any warping during high periods

of stress.

Figure 2.3.: Active suspension system installed on the Prototype.

-9-

Thus, this project will keep this design moving forward after explaining the decisions

taken in their design.

2.2.1. FRONT AND REAR SHELVES

The shelves act as holders for the suspension servomotor and the actuator arms,

allowing the servomotors to rest in the correct position and the actuator arms to move

freely through a plain bearing and 2 washers. They are designed to be affixed to the

vehicle using 4 metric 3 screws just like the suspension supports of the vehicles that

were removed. Both shelves are designed to fit perfectly with the rest of the kit,

avoiding any collisions with any moving parts during operation. The main difference

between each shelf is the extra slot to accommodate the front differential. The following

images are renders of both shelves:

Figure 2.4.: Front shelf render.

Figure 2.5.: Rear shelf render.

-10-

2.2.2. SEMI CYLINDER ACTING AS THE SERVO’S ARM

As mentioned before, the servo arms need redesigning to be able to withstand the

irregular terrain the vehicle might encounter as well as lowering or raising the wheels as

needed. This was accomplished by designing cylinders cut by an oblique plane in such a

way that the surface allows the entire 180º of rotation from the servomotor to be

transformed into a near vertical linear translation, if an appropriate actuator arm is used.

With this arm, as the servo arm rotates the actuator arms gets pushed down, shifting

the position of the wheel downwards as well and lastly raising the chassis which is the

end goal. Clearly if the rotation is in the opposite direction the chassis lowers as the

wheels are “raised” upwards due to the actuator arm not being pushed as much.

Figure 2.6.: Servo arm render.

Evidently the second servo arm is the mirror image of the first, the suspension uses 4 of

these arms, one for each wheel.

2.2.3. ACTUATOR ARMS

This is the last piece in the suspension system designed for this project, it consists of an

3d printed arm that is attached in one end to the shelf using 2 washers and a plain

bearing to allow rotation around that axis. The one end of the shock coil is screwed into

the middle of the arm and lastly the arm ends on a point where it makes contact with

-11-

the servo arm, working as described in its section of this document, and with this last

piece in each wheel the car has a working active suspension.

Figure 2.7.: Actuator arm render.

Although that initial design had some kinks. The main problem was the fact that the 3D

printed point would wear out the servo arms and itself very quickly as 3D materials tend

to be rough creating too much friction between the pieces, this was solved by designing

and adding a bronze point cover to the actuator arm reducing the friction between the

pieces and increasing the durability of both pieces.

2.3. Servomotors Installed

The servomotors chosen for the suspension system are the Turnigy 380mg Micro

servomotors. These micro sized servos were chosen for their small size, low voltage

requirements (as the previous micro controller was only capable of 5V), and finally for

their sturdy construction, the servos make use of metal and carbon gears making them

sturdier than standard servos. This is a bit unnecessary as the new suspension system

reduces the stress placed on the servos but chosen anyways for increased reliability.

These servos are also more than capable of lifting the car up and down thanks to their

4.2kg/cm stall torque when powered at 6V, allowing them to easily act as the active

suspension for the vehicle

-12-

Figure 2.8.: Turnigy 380mg Micro servomotor.

2.4. Motor, ECS Installed

The motor installed on the RC car is the one of the manufacture’s recommended motors

for the TD10 kit, a Turnigy XK3650 3900KV brushless dc inrunner Sensored motor. The

3900KV does not stand for Kilovolts but instead denotes the RPM the motor gives per

volt; thus, this motor specifically gives 3900 RPM for each volt given to it, which is more

than capable for the project.

Figure 2.9.: Turnigy XK3650 3900KV motor

A 3-phase motor like this one requires an ESC (Electronic Speed Controller) to function

properly as the 3 phases need to be managed properly for the motor to work at all

[MODE19]. The motor also has an output for ESC for telemetry, the sensor connection

transmits the state of the phases in the motor as well as it’s temperature for the ESC to

-13-

cut off the motor when it reaches high temperatures. This can be seen in the following

images with the wiring specifics that apply to this motor:

Figure 2.10.: Sensored brushless wire specifications

The ESC chosen is the recommended one for this motor a Turnigy Trackstar 1/10th 80A

Turbo Sensored ESC, which is more than enough to power the car and the all its installed

servomotors thanks to its built in BEC (Battery Eliminator circuit), which as its name

implies, is designed to replace the need of separate batteries in RC vehicles in case you

need different voltage requirements. Unfortunately, the processor driving the program

on the vehicle requires 5V and therefore another voltage regulator is necessary to power

the rest of the components installed. The following image has the details on the ESC’s

Stats.

Figure 2.11.: Turnigy Trackstar 1/10th 80A Turbo Sensored ESC with specs

One thing to note, this ESC requires a separate programmer in order to customize

specialized options such as turbo timing and different operation modes. The

programming box used is the Turnigy TrackStar Turbo and Waterproof ESC Programming

Box with the following options for this ESC:

-14-

Figure 2.12.: Turnigy TrackStar Turbo and Waterproof ESC Programming Box with available options.

-15-

2.5. Infrared sensors

Figure 2.13.: Sharp GP2Y0A51SK0F infrared sensor

For the infrared sensors needed in the vehicle, the project uses 4 Sharp GP2Y0A51SK0F

infrared sensors as they are easy to use, simply requiring power and an ADC to see the

resulting value. The infrared once powered takes around 21ms before its output

represents the distance measured, taking around 16.5ms to update the measurement

as shown in the following image:

Figure 2.14.: Infrared sensor measurement timing

Once the measurement is taken using an ADC, it can then be converted into the needed

distance by simply looking up the value to the following diagram:

-16-

Figure 2.15.: Voltage output vs Distance in cm from the sensor

This diagram is programed into the Simulink model using the lookup table block, in which

we can add the values from the diagram above and allow the model to compare the

voltage value received from the ADC and obtain the needed measurements. The lookup

table set up can be seen in the following image

-17-

Figure 2.16.: Look up table setup.

The model used in the Simulink system is the following:

Figure 2.17.: Infrared sensor’s Simulink model.

The model uses the aforementioned lookup tables and then simply converts the

measurement from cm to m and then saves them into the control BUS for use elsewhere

in the model, the infrared sensors on the back of the RC car are at slightly different

heights than to front sensors, hence the added 5 and 2mm added to the measurements

in the model.

To mount the front sensors, a front bumper was designed to hold the 2 sensors on the

front of the vehicles, a render can be seen in the following image:

-18-

Figure 2.18.: Front bumper render

As seen above, the piece has 2 slots for the sensors just Infront of the wheels for the

active suspension to anticipate changes in the terrain. The rear sensors can just be

attached to the rear shelf using double sided tape in a secure and accurate manner, so

no new pieces are required, although they are slightly higher than their front brothers

which is addressed in the code described before.

-19-

2.6. Testing tracks

To test the vehicle 2 sets of testing tracks were made, one set made with a height 0.8cm

between the ground and the top of the bump (about 30% of the wheel height), and the

other is 0.5cm height. Each set is made of 2 sheets of aluminum, each with the same

bumps so that we can set up the track for regular bumps or irregular bumps, depending

if the tracks are aligned or not when setup. The tracks were made using a bending

machine [reference?] having the slopes be 3cm long and the tops of the bumps 6cm

long. The high bumps testing track can be seen below in both regular and irregular

terrain configurations:

Figure 2.19.: The high bumps testing tracks aligned, for regular bumpy terrain.

Figure 2.20.: The high bumps testing tracks misaligned, for Irregular bumpy terrain.

-20-

2.7. Pololu RP5 Expansion plate

Before any of the new electronic components can be installed, the prototype needs

more space to support them. To solve this, an expansion plate is installed creating a

second level to the vehicle were all the rest of the electronics components can be

installed onto. The plate used is the Pololu RP5/Rover 5 Expansion Plate RRC07B

Figure 2.21.: Pololu RP5/Rover 5 Expansion Plate.

This plate is drilled with 3mm slots allowing easy installation of most electronic boards

with 3mm screws and nuts, allowing the installation of new hardware without getting in

the way of the locomotive parts of the vehicle as well as it’s active suspension system.

-21-

CHAPTER 3: ELECTRONIC HARDWARE

COMPONENTS INSTALLATION AND SOFTWARE

SETUP

3.1. RASPBERRY PI 3 B+

Figure 3.1.: Raspberry Pi 3 B+

The board chosen to control all the new and old components used in the RC Car is the

Raspberry PI 3 B+, that at the time of the project start was the latest and most capable

product of the Raspberry Pi Foundation.

This microcomputer is one of the more affordable options of its class, capable as well as

being extremely easy to use with Simulink as it has an official support toolbox allowing

access to all the GPIO (General Purpose I/O) pins and communications capabilities of the

Raspberry PI 3 B+.

The main advantage of using this microcomputer instead of the specialized ArduPilot

microprocessor used previously, is the computing power, the 1.4GHz 64-bit quad-core

processor dwarfs the ATmega2560 used in the Ardupilot, allowing for more complex

control strategies to be implemented.

However this comes at a tradeoff, a microcomputer is designed to be a cheap computer

replacement and consequently, it does not have some of the integrated peripherals our

previous microprocessor had, especially since the Ardupilot was designed for RC control:

it has no analog inputs therefore it cannot use the infrared sensors already installed, nor

does it have an integrated IMU for all the necessary angle measurements needed for

-22-

the control strategies, it also does not have the same facility in handling all the PWM

channel inputs from the installed receiver and all the PWM outputs. Thus, it is necessary

to include extra boards to extend the capabilities of the Raspberry. These extra boards

communicate with the Raspberry through the integrated communication options of the

Raspberry: serial, I2C [CIRC16], and SPI [MIKE17], and after an initial configuration these

peripherals work just as well as the previous integrated solutions.

The main reason for swapping out the old microprocessor is the official

MATLAB/Simulink Support Package for Raspberry PI hardware, which includes a

customized Raspbian OS image designed to work alongside MATLAB and Simulink

allowing for Simulink models and code to be run in external mode, allowing changes to

parameters during code execution and monitoring of all the sensors and internal

parameters to simplify code creation as all data can be seen in real time, greatly

simplifying the programming process.

3.2. MikroE Click boards

The family of expansion boards chosen to increase the Raspberry PI’s capabilities is

MikroE’s family of Click boards [add reference] which use the mikroBUS Socket standard

[reference] to create a modular set of boards that can be easily added and swapped out

as long as they use the mikroBUS socket.

3.2.1. PI 3 SHIELD CLICK, SHUTTLE CLICK AND MIKROBUS SHUTTLE

BOARDS

Figure 3.2.: PI 3 Shield click

-23-

This shield board is the basic requirement to make the Raspberry Pi compatible with any

of the click boards, as it provides 2 mikroBUS sockets and connects them onto the

Raspberry PI’s 40-pin header providing everything needed for any mikroBUS compatible

boards to function, by simply providing direct connections between the Raspberry’s

GPIO pins and the mikroBUS sockets in order to connect the click boards directly to the

raspberry.

Figure 3.3.: Shuttle click on the left, mikroBUS Shuttle to the right.

This project will use 4 different click boards; thus, the project needs more sockets to

accommodate them all. For this the project will use the Shuttle click socket expansion

board which has 4 standard 16-pin connectors to add up to 4 mikroBUS Shuttles which

are satellite boards where click boards can be plugged in using 16-pin flat Ribbon cables.

With these 2 boards we can expand the number of sockets available to the Raspberry PI,

the project specifically requires 4 mikroBUS Shuttles and 2 Shuttle Clicks, due to some

incompatibilities between the click boards used on the RC Car.

-24-

3.2.2 ADC3 CLICK

Figure 3.4.: ADC 3 Click board

The ADC3 Click board uses a MCP3428 ADC wired to the mikroBUS Socket and to 8

solderless connectors. The MCP3428 is a 16-bit, 4-channel differential Analog-to-Digital

converter that communicates through I2C protocol which makes it a breeze to use with

the Raspberry PI installed. The project uses this ADC to read the analog values from the

infrared distance sensors installed on the RC Car, as the ADC uses differential input each

IR sensor’s signal is connected to the positive terminal while a ground connection is used

on the negative terminal. This ADC has an internal voltage reference of 2.048V and

consequently it cannot read any voltage signal larger than the [Vref], luckily this voltage

is only reached when the distance is smaller than around 2 cm, which during normal

operation the sensors will not reach those values.

The MCP3428 is configured to use the one-shot conversion mode and, 12bits for the

sample resolution size, samples per second are irrelevant in one-shot conversion mode,

as the ADC only makes a measurement when prompted by the Raspberry, nevertheless

the setting is set to 240SPS as a value is needed for the configuration command. The

MCP3428 in one-shot conversion works by taking a measurement as long as a Ready bit

in its configuration register is set to 0, when set to one manually it retakes the

measurement, this allows for the user to take measurements when needed and

conserve some power. As the project needs to measure all 4 channels, instead of just

-25-

changing the Ready bit, the entire configuration byte is sent in order to reset the ready

bit and change the channel to measure with the goal of measuring each channel

sequentially.

To command and receive the converted values from the ADC the following Simulink

model was used:

Figure 3.7.: ADC configuration model

Figure 3.6.: ADC read model

The Simulink model performs 4 functions: first the model initializes the ADC board by

writing the configuration byte to the ADC board through the Raspberry I2C Master Write

-26-

block and checks for the status of the write. If successful the model moves on to the

main control loop for the board which consists of sending a configuration byte

corresponding to the channel to be read, then requests the measurement from the ADC

and finally converts the output into first volts, and then it’s sent to the infrared’s model

for conversion into the necessary units.

3.2.3 PWM CLICK

Figure 3.7.: PWM Click board.

The PWM click consists of a PCA9685PW chip, which is an I2C-bus controlled 16-channel

LED controller optimized for RGBA color applications, wired to the necessary mikroBUS

socket and to 30 male header pins, giving access to all the outputs the chip needs. Even

though the chip is designed for LED control, it still outputs easily controllable PWM

signals which work with any PWM driven peripherals, including all the motors installed

on the RC Car: the 4 servomotors that drive the active suspension, the single direction

servomotor and the ESC which in turn controls the Brushless motor. [If to this point

PWM Signals haven’t been introduced, do so]

The PCA9685PW requires 3 configuration registers to be setup before any of the PWM

channels can be used, the MODE1 and MODE2 registers store the operation

configuration of the board, such as whether sleep mode is activated, and if auto increase

is activated. The last register is the PWM pre-scaler, which allows to quickly change the

frequency of the PWM signal, in this case the motors need 50Hz.

-27-

After the operation registers are configured, the board requires the duty cycle of each

PWM signal in order to generate them, this is set up using the LEDx_ON and LEDx_OFF

registers. These 12bit registers hold a value between 0-4095, where 0 represents the

start of the cycle and 4095 represents the end of the cycle, they are also split into most

and least significant 4bit and 8bit registers respectively and the x represents the channel

the registers control. The chip needs the duty cycle to be inputted by specifying the

period in which the PWM signal is Vcc each cycle as shown in the next figure from the

chip’s datasheet

Figure 3.8.: PWM signal diagram

Using the registers and simple math any duty cycle can be replicated in the board.

The model used to control the board is shown in the next figure

Figure 3.9.: PWM control model

After writing the configuration registers, this model simply converts the values received

from the control program and converts them into instructions that can be loaded into

the PCA9685PW LED. Before the signals are converted the program checks if the

instructions form the controls are within the operation range of the motors, and

switches around the signals into their appropriate channels. Once everything is prepared

the PWM_BYTES function translates the μs used in RC equipment into the ON and OFF

counts for each channel and it gets written in the respective register using the I2C

Master Write block.

-28-

3.2.4. COUNTER CLICK

Figure 3.10.: Counter Click board

The Counter Click board uses a LS7366R Chip a 32-bit quadrature counter, designed to

be used in conjunction with quadrature encoders and communicates though the SPI

protocol. While the project does not use one of those encoders, the ESC that controls

the motor has a sensor plug that includes the state of the 3 phases used to drive the

motor, which can be used like the output of an incremental quadrature encoder as

shown in the following image:

Figure 3.11.: Motor phase sensors

-29-

The sensor signals of the ESC are square and out of phase 90deg, which is the exact input

the counter is expecting. Thus, the counter can count the number of revolutions the

brushless motor does as its rotation depends on the state of the 3 phases driving the

motor. With the number of rotations stored in the counter, the code can then calculate

the difference between counts each sampling period to calculate the number of

revolutions per second the brushless motor makes, allowing the program to know the

exact speed of the car after taking into account the gear ratios between the motor and

the wheels and wheel diameter to calculate the speed of the car in m/s. This can be seen

in the following Simulink models:

Figure 3.12.: Model for initializing the counter board.

First the program initializes the board, the LS7366R ha 2 mode registers to configure,

MDR0 controls the whether the counter uses the quadrature counting mode, if it’s in

free-running mode, and whether the index input is activated among other things that

can be seen in the chips datasheet {reference}. MDR1 controls the number of bytes the

counter uses, whether counting is enabled and allows the user to enable several flags to

monitor the counter. For this project, the LS7366R is configured in x1 quadrature, free-

running mode with the index pin disabled and using 3 bytes for the count. One last detail

about the counter is that the counter has an enable pin which must be set to Vcc for the

counter to count, this leads to a GPIO conflict with the PWM click board as the enable

pin is mapped to the same mikroBUS Socket pin if both boards are connected to the

same Shuttle click board as the PWM click needs 0V in that pin. Therefore, the car has

2 Shuttle clicks to avoid placing both boards on the same mikroBUS socket.

-30-

Figure 3.13.: Model for Counter processing

After a proper initialization of the counter board, the program requests each sampling

period the current count of the counter, calculates the difference with the previous

count, converts the number into revolutions per minute, and filters the number to get a

steady value. After that a small MATLAB function converts the RPM into m/s which is

then stored in the control bus for use elsewhere in the program.

3.2.5. MPU IMU CLICK

Figure3.14.: MPU IMU click board

The MPU IMU Click board is composed of an MPU-6000 chip, this Inertial Motion Unit

(IMU) [DEIM31] chip is one of the first to contain a “Motion processing unit” that

includes a 3 gyroscopes, one for each axis, and a 3 accelerometers in a single chip,

alongside the needed computing power to calculate all the changes in the object’s

angular or perpendicular acceleration, measurements which are essential for the project.

This board also can communicate through I2C or SPI, with the latter being the protocol

used in this case.

An accelerometer detects changes in the proper acceleration of a given object, in this

case the RC car [MOHA18]. This IMU has 3 accelerometers which allows it to measure

changes in acceleration in each of the 3 axes of the car, in a proper frame. Out of these

axes the program only needs the vertical acceleration to measure changes in the height

of the car alongside the infrared sensors.

A gyroscope is a device that detects changes in the angular acceleration of the object

it’s affixed to, allowing the program to keep track of the orientation of the vehicle and

react accordingly [DEIM31]. The IMU has 3 gyroscopes, one for each of the axis: pitch,

-31-

roll, and yaw. The program only needs pitch and roll, which are affected by the

movement of a vehicle in irregular terrain.

Most of the code for this specific IMU chip was already made for other drone projects,

so it was easily repurposed and implemented onto this project

The IMU’s data measurements registers can be accessed using the Raspberry’s SPI

communication blocks, the data output from the IMU is then processed into rad/s^2 and

m/s^2 respectively and lastly it is processed by the IMU calibration function block which

as long as the calibration is activated in the program it will calculate the offsets of the

IMU measurements, although the RC Car should be level during this calibration for the

measurement to be accurate. After calibration the block simply removes the offset from

the IMU measurements and saves the measurements to the control data bus.

IMU also takes advantage of a previously designed Extended Kalman Filter (EKF)

[SING18] designed for it. An EKF is a type of predictive filter that estimates the next

measurements in order to calculate a weighted average with the measurement,

hopefully reducing the noise or errors in the measurement. An EKF is the non-lineal

version of a Kalman filter, and due to the linearization needed it no longer is a optimal

estimator and therefore there can be errors in estimation causing the measurements to

diverge from the true value. Nevertheless, it gives out a reasonable performance making

it the de facto standard for GPS and most navigation systems and its performance with

the prototype is quite noticeable.

3.3. PI EzConnect

Figure 3.15.: Pi-EzConnect shield

-32-

Before installing the PI 3 Click shield, the project needs a way to access some of the

Raspberry’s GPIO pins, namely the dedicated serial pins, and unfortunately the PI 3 Click

shield takes up the entirety of the Raspberry’s 40-pin header without providing a

passthrough for other boards to use. To remedy this, the project uses the PI EzConnect,

which is a prototyping shield board which provides solderless connections to all of the

Raspberry PI’s GPIO pins, as well as GPIO solder points for more permanent connections,

and finally in has a breadboard sections were standard male or female headers can be

soldered for a compact breadboard section.

This project only makes use of the solderless points, as the PI EzConnect is sandwiched

between the Raspberry Pi and the Shield Click, and there is very little clearance to solder

the headers and connect the cables.

3.4. Receiver and transmitter combo

3.4.1. FLYSKY FS-A8S RECEIVER & FS-I6S TRANSMITTER COMBO

Figure 3.16.: FS-A8S receiver

To control the RC car, we need a controller with a transmitter and a corresponding

receiver connected to the Raspberry PI to relay those commands, the receiver chosen is

the FS-A8S made by Flysky. Designed with aerial drones in mind, the FS-A8S is 2.4GHz

receiver using 8 channels with standard PPM or 18 channels with IBUS. PPM stands for

Pulse-Position Modulation and in the field of hobbyist radio control a PPM signals looks

like miniature PWM signals all sent together. A PPM frame is 22.5ms long and is

composed of a total of 9 pulses separated by 3ms spaces, 8 of which are for each one of

the 8 channels it transmits, each pulse ranging from 0.7ms to 1.7ms and the final is for

the start pulse which is as long as need to get the total frame length of 22.5ms. This

setup allows the receiver to only use three wires to relay the controller data alongside

as the necessary ground and Vcc wires, a big advantage over the previous PWM protocol

-33-

which has a set of 3 wires per each channel to relay to the vehicle. A typical PPM frame

can be seen in the following image taken form [MFTE19]

Figure 3.17.: PPM frame scheme

IBUS is a relatively new protocol by Flysky and it’s their version of the SBUS protocol

introduced by Futaba mostly used nowadays by Futaba itself and FrSky. As its name

might imply it consists of a digital serial protocol. IBUS communicates using serial UART

and allows for two-way communication between the receiver and the transmitter

allowing the vehicle in question to send battery, speed and other telemetry data back

to the user, unfortunately the FS-A8S is a one-way receiver so this cannot be

implemented. IBUS supports up to 18 channels with any compatible transmitter and

receiver combo.

The project will be using the FS-A8S through I-BUS as it’s easier to implement with the

Raspberry Pi than PPM, due to the Pi already having a serial port and corresponding

serial read blocks from its toolset, making it trivial to access the controller’s data stream

and commands once the transmission is parsed for each channel’s values.

Figure 3.18.: FS-I6S transmitter

The transmitter used alongside the FS-A8S is the FS-I6S, another Flysky product in order

to capitalize on the proprietary IBUS protocol. The FS-I6S is a 10 channel 2.4 GHz receiver

which is more than enough for the current project, as only 6 of those channels will be

used as follows:

-34-

• Channel 1: Represents the right X-axis stick which handles manual control of the

rear suspension servos

• Channel 2: Represents the right Y-axis stick which handles the Vehicle’s throttle

• Channel 3: Represents the left Y-axis stick which handles the manual control of

the front suspension servos

• Channel 4: Represents the left X-axis stick which handles the turning servo

• Channel 5: Represents the top left switch which changes between automatic and

manual control of the suspension servos

• Channel 8: Represents the top right switch from the left which acts as a Safety

switch

The Top left switch allows the user to toggle between manual control of the Pitch and

roll of the vehicle, while automatic mode lets the control handle the suspension. The

safety switch disables input to the servos for calibration purposes, in its up position it

enables the motors while the bottom position disables them.

3.5. Finished RC car

The finished fully assembled RC car prototype looks as follows:

Figure 3.19.: Finished RC car

The main difference from the previous design is the second level for all the electronic

hardware, except for the IMU which is directly installed onto the chassis of the car, to

ensure correct readings from the IMU. The second difference is the weight, with the

-35-

second level, as well as more electronics, end up raising the weight of the car but the

suspension system servomotors are more than capable of handling the extra weight,

testing done with the manual control of the suspension systems shows no noticeable

difference between pre upgrade performance and now.

-36-

CHAPTER 4: OBTAINING THE MODELS

In order to be able to design a control scheme for the active suspension system, the

transfer functions that link the movement of the RC car with its sensors are needed.

These movements are the pitch, roll and the height of the vehicle, and as these are 3

distinct movements, a transfer function will be generated for each, with the end goal of

controlling each movement separately using a PID regulator for each movement.

To achieve this, 3 tests will be conducted, one for each movement, that send a PRBS

(Pseudorandom Binary Sequence) signal to the appropriate servomotors. A PRBS signal

is chosen as its Fourier harmonics analysis shows that all of its harmonics have the same

amplitude, therefore the generated model will be compatible for all frequencies

[JACK71].

To generate this PRBS signal we use the MATLAB command idinput as follows:

• 512 stands for the number of samples to be generated

• ‘prbs’ signals the type of input signal to generate

• [0 0.02] Is the frequency range the signal will have. This needs to be small, in

order of servomotor movement be fast enough to react to the changes it will

face in a real track.

• [1500 2100] represents the range of values the signal can take; this range is

chosen to use the full range of motion the suspension motors can give without

lowering the chassis into the ground

Once the signal is generated it needs to be looped so that the test can be as long as

needed, for this the Repeating Signal Star block is used, looping the signal indefinitely

until the test it done.

4.1. Model Tests

The test requires that the car pitches forward and backward, while using the full range

of motion the suspension servos can give before it collides with the ground. During the

test, the pitch angle measured by the vehicles IMU will be recorded.

The following model is the one used for all these tests:

-37-

Figure 4.1.: Simulink model used to test for the necessary transfer functions

The Repeating Sequence Star blocks input the generated PRBS signals into the control

BUS which then gets relayed into the appropriate channels in the main control update

block, this block also decides which test to run each time, depending on the setup

configuration, both of these files can be seen in the annex section of this document.

Once the IMU’s calibration phase is complete, the test can be started from the

transmitter. As the test is underway the 3 scopes seen in the model record their

respective movement alongside its angular rate or speed and the input PRBS signal

generated.

After the tests the data recorded is then prepared for processing with MATLAB’s system

identification command

4.1.1. PITCH TEST AND PLANT CALCULATION

This test requires the vehicle to pitch forwards and backwards, in order to see the effect

of the full pitching motion on the pitch angle of the vehicle measure by the installed IMU.

Using the testing model shown in Figure 4.1. configured for a pitch test, the following

data was obtained:

-38-

Figure 4.2.: Pitch test results, calibration time section omitted

Now the data needs to be prepared before we can calculate the transfer function of the

plant. This is accomplished with the DATA_PRE_PROCESSING_PITCH.m script, which

remove the mean value of the data as well as reducing the range of the PRBS signal to

[-1, 1] in order for it to match the control to be designed for them.

Once the data is prepared, it is imported into the System Identification toolbox, which

attempt to estimate the transfer functions of the plant of each movement

First the data must be imported from the workspace as a time domain signal as shown

in the following image:

Figure 4.3.: Pitch data import

The script that prepares the data for the toolbox renames the PRBS signal as INPUT and

the pitch/roll/height measurement as OUTPUT. The data imported can be seen in the

following image:

-39-

Figure 4.4.: Prepared Pitch data

Once successfully imported as time domain data, the data must be then set both as

Working Data and Validation Data in the toolbox before it can be processed. It is worth

mentioning that the toolbox can also perform some pre-processing such the range of

the data if needed. to process the model, select the Estimate --> box and in the following

dropdown menu selected the option Process Models as seen in the following screenshot:

Figure 4.5.: Identification toolbox

This brings up the Processing Models window, here the number of poles, whether a zero

is calculated can be selected, as well as initial estimates for each of the transfer

function’s values. Once set the toolbox will estimate the best fit for the settings and data

provided.

-40-

Figure 4.6.: Process models settings and results for pitch

In the case of the pitch the best match is 87.96% and the fit to the measured data can

be seen below:

Figure 4.7.: Simulated Pitch output vs Measured Pitch output.

Leaving us with the following transfer function

𝑇𝐹𝑃𝑖𝑡𝑐ℎ =
−53.8398(𝑠 + 33.6689)

(𝑠 + 2.3667)(𝑠2 + 25.547 + 471.052)

-41-

4.1.2. ROLL TEST AND PLANT CALCULATION

This test requires the vehicle to roll form left to right, in order to see the effect of the

full roll motion on the roll angle of the vehicle measured by the installed IMU.

This follows the same method as before, using the testing model shown in Figure 4.1.

configured this time for a roll test, the following data was obtained:

Figure 4.8.: Roll test results, calibration time section omitted

As mention during the pitch test the data needs to be prepared using

DATA_PRE_PROCESSING_ROLL.m script, which does the same functions as it’s pitch

counter part only for the roll measured data. The pre-processed data can be seen in the

next image:

Figure 4.9.: Prepared Roll data

Following the same method as before, the calculated transfer function for the Roll plant

is as follows:

-42-

Figure 4.10.: Process models settings and results for roll

In the case of the roll the best match is 92.57% and the fit to the measured data can be

seen below:

Figure 4.11.: Simulated Roll output vs Measured Roll output.

Leaving us with the following transfer function

𝑇𝐹𝑅𝑜𝑙𝑙 =
582.092(𝑠 + 39.6181)

(𝑠 + 13.6923)(𝑠2 + 21.6745 + 604.22)

-43-

4.1.2. ROLL TEST AND PLANT CALCULATION

This test requires the vehicle to raise its chassis up and down, in order to see the effect

of the full vertical range of the system on the height of the vehicle measured by the

installed IMU and infrared sensors.

Once again this follows the same method as before, using the testing model shown in

Figure 4.1. configured this time for a roll height, the following data was obtained:

Figure 4.12.: Height test results, calibration time section omitted

As mention during the pitch test the data needs to be prepared using

DATA_PRE_PROCESSING_POS_Z.m script, which does the same functions as it’s pitch

counterpart only for the height test measured data. The pre-processed data can be seen

in the next image:

Figure 4.13.: Prepared height data

Following the same method as before, the calculated transfer function for the height

plant is as follows:

-44-

Figure 4.14.: Process models settings and results for height

Unfortunately, in the case of the height the best match is 39.24% which is not enough

to represent the plant of the height properly. To get around this, another method of

estimation can be used, with a least squares approach [GIOR85] looking like the best

for this set of data, but there was not enough time to set up the necessary scripts to

perform this estimation and as such the height transfer function was not calculated and

consequently the controls for each plant were not made due to a lack of time.

-45-

CHAPTER 6: CONCLUSIONS

Even though it was not possible to finish the end goal of this work, that being the

designing a control scheme to test the active suspension system on the RC car, it was

possible to successfully finish the other 2 objectives, which are to upgrade the electronic

hardware without hampering the mechanical active suspension system, and creating a

Simulink model that allows full functionality of the RC car prototype and allows for

complex control strategies to be implemented.

The first of these objectives, is to upgrade the electronic hardware without hampering

the functionality of the active suspension system, this was successfully implemented

adding a new floor to the vehicle housing all the new electronics without changing the

performance of the active suspension system during manual trials.

The second objective is to prepare a Simulink model allowing access to all the new and

old functionality of the car, allowing direct telemetry data to be collected from the car

without needing to stop to access the data from the onboard memory thanks to the

official Simulink Raspberry Pi support and correct setup of all the components.

With these 2 objectives, the main motivation to upgrade and setup this vehicle with a

working active suspension setup for future classes and projects is accomplished. All in

all, the prototype is ready to test out new control schemes in the control focused classes

or project in the university, and hopefully it helps create new projects in this ever-

increasing field in the future.

-46-

CHAPTER 7: FUTURE DEVELOPMENTS

There are various new avenues of research available to continue from this work, either

stemming directly from this project as improvements or completely new ones:

• Finishing the simple control strategy planned for the project

• The testing of different and more sophisticated control strategies, researching

their effectiveness on active suspension systems, using this setup.

• Designing more conventional and complex semi-active/active suspension

systems such as hydraulics and electromagnetic suspensions and testing them

using quarter-car setups (only one wheel)

• Testing the previous points on real vehicles or on half-car models

-47-

REFERENCES

[ALEX11] C. Alexandru and P. Alexandru, "A comparative analysis between the

vehicles’," INTERNATIONAL JOURNAL OF MECHANICS, vol. 5, no. 4, p. 8, 2011.

[SHIR19] Shirish, "What Is Active Suspension Or Adaptive Suspension? - CarBikeTech,"

carbiketech.com, 12 April 2019. [Online]. Available: https://carbiketech.com/active-

suspension-adaptive-suspension/. [Accessed 25 August 2019].

[JIMÉ16] F. d. B. Jiménez Valverde, "Diseño de un sistema de suspensión activa para un

vehículo a escala," Trabajo de fin de grado, ICAI, Universidad Pontificia Comillas, Madrid,

2016.

[AZUM19] T. Azuma, "What Is Traction Control And How Does It Work? - CAR FROM

JAPAN," 25 Feburary 2019. [Online]. Available: https://carfromjapan.com/article/car-

maintenance/traction-control-system/. [Accessed 25 August 2019].

[MODE19] Modelflight, "What is an Electronic Speed Controller and how does it differ

from brushed to brushless motors?," Modelflight, 06 February 2019. [Online]. Available:

https://www.modelflight.com.au/blog/electronic-speed-controllers. [Accessed 25

August 2019].

[CIRC16] Circuit Basics, "Basics of the I2C Communication Prototcol," Circuit Basics, 13

February 2016. [Online]. Available: http://www.circuitbasics.com/basics-of-the-i2c-

communication-protocol. [Accessed 25 August 2019].

[MIKE17] MIKEGRUSIN, "Serial Peripheral nterface (SPI) - Learn.sparkfun.com,"

SparkFun, 2017. [Online]. Available: https://learn.sparkfun.com/tutorials/serial-

peripheral-interface-spi/all. [Accessed 25 August 2019].

[CHEN94] J.-H. Chen, S.-C. Lee and D. B. DeBra, "Gyroscope free strapdown inertial

measurement," Journal of Guidance, Control, and Dynamics, vol. 17, no. 2, pp. 286-290,

1994.

[MOHA18] Z. Mohammed, I. M. Elfadel and M. Rasras, "Monolithic Multi Degree of

Freedom (MDoF) Capacitive MEMS Accelerometers," Micromachines, vol. 9, no. 11, p.

602, 2018.

[DEIM31] R. F. Deimel, "Mechanics of the Gyroscope," Nature, vol. 128, no. 3225, pp.

289-289, 1931.

[SING18] H. Singh, "Extended Kalman Filter: Why do we need an Extended Version?,"

Medium, 7 April 2018. [Online]. Available: https://towardsdatascience.com/extended-

kalman-filter-43e52b16757d. [Accessed 25 August 2019].

[JACK71] P. A. Jackson, "PRBS cross-correlation measurements by hybrid computational

techniques," The Computer Journal, vol. 14, no. 1, pp. 49-54, 1971.

-48-

[GIOR85] A. A. Giordano and F. M. Hsu, Least Square Estimation with Applications to

Digital Signal Processing, New York: John Wiley & Sons, Inc., 1985.

[MFTE19] MFTech, "R/C PPM encoding - MFTech," MFTech, [Online]. Available:

http://www.mftech.de/ppm_en.htm. [Accessed 25 August 2019].

[PAGO06] F. L. Pagola, Regulación Automatica, Madrid: Universidad Pontificia Comillas,

2006.

-49-

PART 2: ECONOMIC

ANALYSIS

Part 3: Annexes

-50-

CHAPTER 1: ECONOMIC ANALYSIS

As it was previously mentioned in the state-of-the-art section of this work, the field of

active suspension is a one that is in constant growth, as all luxury car brands have or are

starting their own version of Mercedes-Benz’s Magic body control, and others like

ClearMotion are exclusively developing their own systems to license to the main car

manufactures like, Audi, Mercedes Benz, Renault, etc. That’s not counting the

importance placed into these systems by professional competition teams as the

difference in handling is night and day.

This positions this work in a market that is about to boom. Autonomous vehicles are

becoming each day more of a reality and they will need some type active suspension

system to stay relevant, as most users will want to focus on other things while the car

handles the navigation and driving, and unstable rides make that difficult.

In addition, most automotive manufacturing companies are constantly designing and

redesigning their systems, as while these systems are effective in stabilizing the vehicle,

they are also still far too expensive to market to lower end vehicle series: as the cost in

designing, fabrication, implementation still carry too many costs and that not taking into

account the price of the necessary high-end sensors for the system that normally require

expensive maintenance.

Therefore, this field is one that in the future is going to need more experienced and

trained engineers that can effectively design new strategies and find viable ways to

implement them, something that the Comillas Pontifical University can support with

more projects like this one, creating a new avenue for employment in multinational

enterprises.

-51-

PART 3: ANNEXES

-52-

CHAPTER 1: CONFIG_RC_CAR.M

This code sets up everything needed for the model to function, it loads all the necessary

data and configuration files to run all the peripherals

clc

clear

format short e

%%

%%%%%

%% GENERAL PARAMETERS

%%

%%%%%

% Sampling time (s)

SAMPLING_TIME = 10e-3;

fprintf('SAMPLING_TIME (s) = %g s\n',SAMPLING_TIME);

% Gravity in Madrid (m/s^2)

GRAVITY = 9.80208;

%%

%%%%%

%% SENSORS

%%% %%%%%%%%%%%%

%%%%%

% SENSOR UPDATE PERIOD (samples): [Frequency Slot]

% Update frequency in samples. If frequency = 0, sensor is not

activated

SENSOR_FREQ = [

 % ACCELEROMETER XYZ -> 1

 1 0

 % IR DISTANCE Z AXIS -> 2

 1 0

];

% ************** IMU CONFIGURATION ****************

run('../HARDWARE_COMPONENTS/CONFIG_MPU6000')

% ************** MAGNETOMETER CONFIGURATION ****************

run('../HARDWARE_COMPONENTS/CONFIG_NO_MAGNETOMETER')

% ************** GPS CONFIGURATION ****************

run('../HARDWARE_COMPONENTS/CONFIG_M8NUBLOX')

% ************** BAROMETER CONFIGURATION ****************

run('../HARDWARE_COMPONENTS/CONFIG_MS5611')

% ************** BATTERY MANAGEMENT SYSTEM ****************

run('../HARDWARE_COMPONENTS/CONFIG_BMS')

% ************** ADC MCP3428 SETUP *************

run('../HARDWARE_COMPONENTS/CONFIG_MCP3428')

% ************** COUNTER LS7366R SETUP *************

run('../HARDWARE_COMPONENTS/CONFIG_LS7366R')

%%

%%%%%

%% RC RECEIVER

%%

%%%%%

-53-

% ************** RC RECIEVER CONFIGURATION ****************

run('../HARDWARE_COMPONENTS/CONFIG_RCRX_IBUS')

%%

%%%%%

%% ACTUATORS

%%

%%%%%

% ******** BLDC CONFIGURATION ********

run('../HARDWARE_COMPONENTS/CONFIG_BLDC')

run('../HARDWARE_COMPONENTS/CONFIG_PCA9685')

%%

%%%%%

%% MODEL

%%

%%%%%

run('../SOFTWARE_COMPONENTS/MODEL/CONFIG_MODEL')

MODEL_INI.PARAM.SENSOR_FREQ = SENSOR_FREQ;

%%

%%%%%

%% EKF

%%

%%%%%

cd '../SOFTWARE_COMPONENTS/EKF'

EKF_INI = CONFIG_EKF(MODEL_INI);

SENSOR_ACT = boolean([...

 (SENSOR_FREQ(1,1)>0)*ones(3,1) % ACCEL XYZ

 (SENSOR_FREQ(2,1)>0) %DIST_Z

]);

EKF_INI.SENSOR_ACT = SENSOR_ACT;

clear SENSOR_ACT

cd ../../CONFIGURATION

%%

%%%%%

%% CONTROL

%%

%%%%%

cd '../SOFTWARE_COMPONENTS/CONTROL'

CONTROL_INI = CONFIG_CONTROL(MODEL_INI);

CONTROL_INI.EKF = EKF_INI;

CONTROL_INI.INPUT.IMU = IMU_INI;

CONTROL_INI.INPUT.RCRX = RCRX_INI;

CONTROL_INI.INPUT.ADC = ADC_INI;

CONTROL_INI.INPUT.ENCODER = ENCODER_INI;

CONTROL_INI.OUTPUT.BLDC = BLDC_INI;

CONTROL_INI.PARAM.SENSOR_FREQ = single(SENSOR_FREQ);

%PRBS

TEST_PITCH_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]);

TEST_ROLL_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]);

TEST_POSZ_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]);

cd ../../CONFIGURATION

%%

%%%%%

%% MAVLINK

%%

%%%%%

-54-

% UART transfer rate (bits/s)

MAVLINK_TRANSFER_RATE = 57600; % UART

fprintf('MAVLINK TRANSFER RATE = %d bits/s\n',MAVLINK_TRANSFER_RATE);

% MAVLINK sampling time

% MAVLINK_SAMPLING_TIME = 2*SAMPLING_TIME;

MAVLINK_SAMPLING_TIME = SAMPLING_TIME;

fprintf('MAVLINK SAMPLING TIME = %g s\n',MAVLINK_SAMPLING_TIME);

% MAVLINK buffer size

MAVLINK_BUFFER_SIZE = 50;

cd ../SOFTWARE_COMPONENTS/MAVLINK

fprintf('MAVLINK BUFFER SIZE = %d bytes\n',MAVLINK_BUFFER_SIZE);

% SYSTEM MAVLINK configuration

PARAM_LIST_LEN = 1;

disp('MAVLINK FOR CONTROL SYSTEM:')

MAVLINK_SYS_INI = CONFIG_MAVLINK(MAVLINK_BUFFER_SIZE,[0 30

26],1,0,MAVLINK_SAMPLING_TIME,PARAM_LIST_LEN);

% PC MAVLINK configuration

disp('MAVLINK FOR PC CONTROL STATION:')

MAVLINK_PC_INI = CONFIG_MAVLINK(MAVLINK_BUFFER_SIZE,[0

191],0,0,MAVLINK_SAMPLING_TIME,PARAM_LIST_LEN);

cd ../../CONFIGURATION

%%

%%%%%

%% BUS DEFINITIONS

%%

%%%%%

% --

cd '../BUS_DEFINITIONS'

BusDefinition(MODEL_INI,'MODEL_Bus')

BusDefinition(EKF_INI,'EKF_Bus')

BusDefinition(CONTROL_INI,'CONTROL_Bus')

BusDefinition(MAVLINK_SYS_INI,'MAVLINK_Bus')

% --

cd ../CONFIGURATION

%%

%%%%%

%% SIMULINK MODEL CONFIGURATION

%%

%%%%%

cd('../SIMULINK');

MODEL_SLX = 'RASPI_CONTROL_SYSTEM';

open(MODEL_SLX)

% RUN_MODE DEFINITION

% / 0. REAL-TIME SIMULATION / 1. CONTROL VALIDATION / 2. IMPLEMETATION

RUN_MODE = 2;

switch RUN_MODE

 case 0 % REAL-TIME SIMULATION

set_param(MODEL_SLX,'FixedStep','MODEL_INI.PARAM.SIM_SAMPLING_TIME');

 set_param(MODEL_SLX,'StopTime','inf');

 set_param([MODEL_SLX '/HARDWARE'],'Commented','on');

 set_param([MODEL_SLX '/SIMULATION'],'Commented','off');

 set_param([MODEL_SLX '/Microseconds at

Start'],'Commented','on');

 set_param([MODEL_SLX '/Microseconds at

End'],'Commented','on');

 set_param([MODEL_SLX '/COMPUTATIONAL LOAD'],'Commented','on');

-55-

 set_param([MODEL_SLX '/MONITORIZATION/BLACK

BOX'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE:

SCOPES'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES'],'Commented','off');

 set_param([MODEL_SLX

'/MONITORIZATION/MAVLINK'],'Commented','on');

 set_param([MODEL_SLX '/SIMULATION/Simulation

Pace'],'Commented','off');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF 1'],'Commented','through');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF 2'],'Commented','through');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF 3'],'Commented','through');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF 4'],'Commented','through');

 set_param(MODEL_SLX,'SimulationMode','Normal');

 CONTROL_INI.STATE.CURRENT_STATUS = uint8(0);

 CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(0);

 % Closed-loop transfer-function filter activation

 for nn = 1:12

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF ' num2str(nn)],'Commented','through');

 end

 case 1 % FAST SIMULATION

set_param(MODEL_SLX,'FixedStep','MODEL_INI.PARAM.SIM_SAMPLING_TIME');

set_param(MODEL_SLX,'StopTime',num2str(MODEL_INI.PARAM.SIM_FINAL_TIME)

);

 set_param([MODEL_SLX '/HARDWARE'],'Commented','on');

 set_param([MODEL_SLX '/SIMULATION'],'Commented','off');

 set_param([MODEL_SLX '/SIMULATION/Simulation

Pace'],'Commented','on');

 set_param([MODEL_SLX '/Microseconds at

Start'],'Commented','on');

 set_param([MODEL_SLX '/Microseconds at

End'],'Commented','on');

 set_param([MODEL_SLX '/COMPUTATIONAL LOAD'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/BLACK

BOX'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE:

SCOPES'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES'],'Commented','off');

 set_param(MODEL_SLX,'SimulationMode','Normal');

 % Closed-loop transfer-function filter activation

 for nn = 1:12

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES/Second-order LPF ' num2str(nn)],'Commented','through');

 end

 %*************** EKF TUNING ****************

 % FLIGHT

 CONTROL_INI.STATE.CURRENT_STATUS = uint8(8);

 CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(8);

 %***

 case 2 % IMPLEMENTATION

 try

 clear rpi

-56-

 rpi = raspberrypi;

 rpi.stopModel(MODEL_SLX);

 aux = pwd;

 rpi.system(['rm -rf \MATLAB_ws/R2018b/' aux(1)])

 catch

 end

 set_param(MODEL_SLX,'FixedStep','IMU_INI.SAMPLING_TIME');

 set_param(MODEL_SLX,'StopTime','inf');

 set_param([MODEL_SLX '/HARDWARE'],'Commented','off');

 set_param([MODEL_SLX '/SIMULATION'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION'],'Commented','off');

 set_param([MODEL_SLX '/Microseconds at

Start'],'Commented','on'); % CHANGED FOR THROTTLE TESTING SHOULD BE

'off'

 set_param([MODEL_SLX '/Microseconds at

End'],'Commented','on'); % CHANGED FOR THROTTLE TESTING SHOULD BE

'off'

 set_param([MODEL_SLX '/COMPUTATIONAL

LOAD'],'Commented','on'); % CHANGED FOR THROTTLE TESTING SHOULD BE

'off'

 set_param([MODEL_SLX '/MONITORIZATION/BLACK

BOX'],'Commented','on');

 set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE:

SCOPES'],'Commented','off');

 set_param([MODEL_SLX '/MONITORIZATION/SIMULATION:

SCOPES'],'Commented','on');

 set_param([MODEL_SLX

'/MONITORIZATION/MAVLINK'],'Commented','on');

 set_param(MODEL_SLX,'SimulationMode','External');

 % set_param([MODEL_SLX '/Target Setup'],'Commented','off');

 % SYSTEM STATUS: ANGLE CONTROL

 CONTROL_INI.STATE.CURRENT_STATUS = uint8(0);

 CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(0);

 otherwise

end

clear RUN_MODE MODEL_SLX

clear MAVLINK_TRANSFER_RATE MAVLINK_BUFFER_SIZE PARAM_LIST_LEN

clear EKF_INPUT_SIZE EKF_STATE_SIZE EKF_OUTPUT_SIZE

-57-

CHAPTER 2: CONFIG_MCP3428.M

This is the initialization code for the ADC3 Click board, which loads all the necessary

addresses and variables needed for the model to function.

%% CONFIGURATION FILE FOR THE MCP3428 ANALOGUE TO DIGITAL CONVERTER
% Slave address for ADC converter MCP3428
MCP3428.ADDRESS = bin2dec('01101000');
MCP3428.ADDRESS_WRITE = hex2dec('D0');
MCP3428.ADDRESS_READ = hex2dec('D1');

% Configuration register for CH1, OSM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_100 = bin2dec('10000000');
% Configuration register for CH2, OSM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_200 = bin2dec('10100000');
% Configuration register for CH3, OSM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_300 = bin2dec('11000000');
% Configuration register for CH4, OSM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_400 = bin2dec('11100000');
% Configuration register for CH1, OSM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_101 = bin2dec('10000100');
% Configuration register for CH2, OSM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_201 = bin2dec('10100100');
% Configuration register for CH3, OSM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_301 = bin2dec('11000100');
% Configuration register for CH4, OSM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_401 = bin2dec('11100100');
% Configuration register for CH1, CCM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_110 = bin2dec('10010000');
% Configuration register for CH2, CCM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_210 = bin2dec('10110000');
% Configuration register for CH3, CCM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_310 = bin2dec('11010000');
% Configuration register for CH4, CCM, 240 SPS, PGA=1 (12 bits)
MCP3428.CONFIG_REG_410 = bin2dec('11110000');
% Configuration register for CH1, CCM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_111 = bin2dec('10010100');
% Configuration register for CH2, CCM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_211 = bin2dec('10110100');
% Configuration register for CH3, CCM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_311 = bin2dec('11010100');
% Configuration register for CH2, CCM, 60 SPS, PGA=1 (14 bits)
MCP3428.CONFIG_REG_411 = bin2dec('11110100');

%% General parameters
% Reference voltage
MCP3428.VREF = single(2.048); % V
% Samples per second
MCP3428.SPS = uint8(240); % Hz
% Number of bits
MCP3428.NBITS = uint8(12);
% Conversion mode
% / 0: Continuous conversion / 1: One-shot conversion
MCP3428.MODE = boolean(1);
% Configuration bytes for each channel
MCP3428.CFG = [MCP3428.CONFIG_REG_100 MCP3428.CONFIG_REG_200 ...
 MCP3428.CONFIG_REG_300 MCP3428.CONFIG_REG_400]';
% Programmable gain amplifier for each channel

-58-

MCP3428.PGA = uint8([1 1 1 1]');
% Total number of channels converted
MCP3428.NUM_CH = 4;

%% INI Setup
ADC_INI.CHANNEL1 = 0;
ADC_INI.CHANNEL2 = 0;
ADC_INI.CHANNEL3 = 0;
ADC_INI.CHANNEL4 = 0;

-59-

CHAPTER 3: CONFIG_LS7366R.M

This is the initialization code for the Counter Click board, which loads all the necessary

addresses and variables needed for the model to function.

%% CONFIGURATION FILE FOR THE LS7366R 32-BIT QUADRATURE COUNTER
LS7366R.SAMPLING_TIME = 1e-03;
%---

% IR Codes/ADDRESSES
LS7366R.WR_MDR0_ADDRESS = uint8(bin2dec('10001000'));
LS7366R.WR_MDR1_ADDRESS = uint8(bin2dec('10010000'));
LS7366R.RD_MDR0_ADDRESS = uint8(bin2dec('01001000'));
LS7366R.RD_MDR1_ADDRESS = uint8(bin2dec('01010000'));
LS7366R.RD_CNTR_ADDRESS = uint8(bin2dec('01100000'));
LS7366R.RD_STR_ADDRESS = uint8(bin2dec('01110000'));
LS7366R.CLR_CNTR_ADDRESS = uint8(bin2dec('00100000'));
%---

% CONFIG BYTES
% FILTER CLOCK DIV=1, INDEX DISABLED, FREE-RUNNING MODE, X1 QUDRATURE

MODE
LS7366R.CONFIG_MDR0_BYTE = uint8(bin2dec('01000001'));
% NO FLAGS, COUNTING ENABLED, 2-BYTE MODE
LS7366R.CONFIG_MDR1_BYTE = uint8(bin2dec('00000010'));
%CLEAR COUNTER DUMMY BYTE
LS7366R.CLEAR_CNTR_BYTE = uint8(0);
%---

% INI
ENCODER_INI.SPEED = single(0);

-60-

CHAPTER 4: CONTROL UPDATE

FUNCTION

This is the code for the control update function that handles the different controls

strategies and necessary code for their correct operation.

function CONTROL_OUT = CONTROL_UPDATE(CONTROL_IN)

%% COPY CONTROL BUS
CONTROL_OUT = CONTROL_IN;

%% CONTROL_MODE
% / 0. INITIALIZATION / 1. ESTIMATION / 2.

SETTING OPERATION POINT
% / 3. TESTING VELOCITY CONTORL / 4. VELOCITY CONTROL ONLY / 5. FULL

CONTROL
% / 6. MODEL TESTING
CONTROL_MODE = CONTROL_OUT.STATE.CONTROL_MODE;
TESTING_MODE = CONTROL_OUT.STATE.TESTING_MODE;
if CONTROL_MODE == 0 % INITIALIZATION
 return
else
 CONTROL_OUT.EKF.EKF_MODE = CONTROL_OUT.STATE.EKF_MODE;
end

%% READ MEASUREMENTS
GYRO = CONTROL_OUT.INPUT.IMU.GYRO; % rad/s
ACCEL = CONTROL_OUT.INPUT.IMU.ACCEL; % m/s^2
GYRO_MEAN = CONTROL_OUT.INPUT.IMU.GYRO_MEAN; % rad/s
ACCEL_MEAN = CONTROL_OUT.INPUT.IMU.ACCEL_MEAN; % m/s^2
DIST_Z = CONTROL_OUT.INPUT.DIST_Z;
RAW_CH = CONTROL_OUT.INPUT.RCRX.RAW_CH;
SPEED = CONTROL_OUT.INPUT.ENCODER.SPEED;

%% EKF UPDATE
% EKF INPUT = [GYRO_MEAN ; ACCEL_MEAN ; GYRO_BIAS_INPUT ;

ACCEL_BIAS_INPUT]'
CONTROL_OUT.EKF.INPUT = [GYRO_MEAN ; ACCEL_MEAN ;

zeros(6,1,'single')];
% EKF OUTPUT
CONTROL_OUT.EKF.OUTPUT = [ACCEL ; DIST_Z];
% EKF UPDATE
CONTROL_OUT.EKF = EKF(CONTROL_OUT.EKF);
% STATE UPDATE
EULER_ANG = CONTROL_OUT.EKF.STATE(1:3); % rad
GYRO_BIAS = CONTROL_OUT.EKF.STATE(4:6); % rad/s
EARTH_VEL_Z = CONTROL_OUT.EKF.STATE(7); % m/s
EARTH_POS_Z = CONTROL_OUT.EKF.STATE(8); % m
ACCEL_BIAS = CONTROL_OUT.EKF.STATE(9:11); % m
CONTROL_OUT.INPUT.EARTH_POS_Z = EARTH_POS_Z;
CONTROL_OUT.INPUT.EARTH_VEL_Z = EARTH_VEL_Z;
GRAVITY = CONTROL_OUT.PARAM.GRAVITY;
CONTROL_OUT.INPUT.EARTH_ACCEL_Z = ...
 single([0,0,1]*(CONTROL_OUT.EKF.PARAM.matDCM_BE*([1 1 -

1]'.*(ACCEL-ACCEL_BIAS)) + [0 0 GRAVITY].'));

-61-

CONTROL_OUT.INPUT.EULER_ANG = EULER_ANG;
BODY_RATE = GYRO - GYRO_BIAS;
EULER_RATE = ...
 CONTROL_OUT.EKF.PARAM.matRATE_BE*BODY_RATE;
CONTROL_OUT.INPUT.EULER_RATE = EULER_RATE;
if CONTROL_MODE == 1 % ESTIMATION
 return
end

%% INITIALIZE OUTPUTS
ESC_PWM = 1500*ones(10,1,'single');
% CONTROL PASS THROUGH FOR INPUTS
ESC_PWM(3) = RAW_CH(3); %STEERING

%% CONTROL PARAMETERS
% GENERAL PARAMETERS
SAMPLING_TIME = CONTROL_OUT.PARAM.SAMPLING_TIME;
%CONTROL OUTPUT VALUE
PITCH_CONTROL = CONTROL_OUT.OUTPUT.PITCH_CONTROL;
ROLL_CONTROL = CONTROL_OUT.OUTPUT.ROLL_CONTROL;
POS_Z_CONTROL = CONTROL_OUT.OUTPUT.POS_Z_CONTROL;

%% CONTROL STATE
persistent initialize PIT_INT_STATE PIT_DER_STATE ROLL_INT_STATE

ROLL_DER_STATE ...
 POS_Z_INT_STATE POS_Z_DER_STATE VEL_INT_STATE

VEL_DER_STATE
if isempty(initialize)
 PIT_INT_STATE = single(0);
 PIT_DER_STATE = single(0);
 ROLL_INT_STATE = single(0);
 ROLL_DER_STATE = single(0);
 POS_Z_INT_STATE = single(0);
 POS_Z_DER_STATE = single(0);
 VEL_INT_STATE = single(0);
 VEL_DER_STATE = single(0);
 initialize = 1;
end
%% SET OPERATION HEIGHT
switch CONTROL_MODE
 case {2,5}
 ESC_PWM(4) = 1800;
 ESC_PWM(5) = 1800;
 ESC_PWM(6) = 1800;
 ESC_PWM(7) = 1800;
 otherwise
end

%% START OF CONTROL STRATEGY REGION
%% VELOCITY XYZ: PID CONTROLLER
switch CONTROL_MODE
 case 2
 case 3 % Square Wave testing
 % INPUTS
 CTRL_INPUT.TARGET =

single((single(CONTROL_OUT.INPUT.TESTING_STEP)-1500)*(1.4e-

3)); %THROTTLE TARGET %single((CONTROL_OUT.INPUT.TESTING_STEP-

1500)*(1.4e-3));
 CTRL_INPUT.MEASUREMENT = single(SPEED);
 CTRL_INPUT.DERIVATIVE = single(0);
 CTRL_INPUT.INT_STATE = VEL_INT_STATE;

-62-

 CTRL_INPUT.DER_STATE = VEL_DER_STATE;
 % PARAMETERS
 CTRL_PARAM.Ts = SAMPLING_TIME;
 CTRL_PARAM.K = CONTROL_OUT.PARAM.VEL_K;
 CTRL_PARAM.Ti = CONTROL_OUT.PARAM.VEL_Ti;
 CTRL_PARAM.Td = CONTROL_OUT.PARAM.VEL_Td;
 CTRL_PARAM.b = CONTROL_OUT.PARAM.VEL_b;
 CTRL_PARAM.N = CONTROL_OUT.PARAM.VEL_N;
 CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.VEL_MAX_CONTROL;
 CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.VEL_MIN_CONTROL;
 CTRL_PARAM.INT_DISC_TYPE =

CONTROL_OUT.PARAM.VEL_INT_DISC_TYPE;
 CTRL_PARAM.DER_DISC_TYPE =

CONTROL_OUT.PARAM.VEL_DER_DISC_TYPE;
 CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.VEL_DER_INPUT;
 CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.VEL_ANTIWINDUP;
 % PID CONTROL
 CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM);
 % OUTPUT: ACCELERATION TARGET
 ESC_PWM(2) = single(((CTRL_OUTPUT.CONTROL)*(1/(1.4e-

3)))+1500);
 % STATE
 VEL_INT_STATE = CTRL_OUTPUT.INT_STATE;
 VEL_DER_STATE = CTRL_OUTPUT.DER_STATE;

 case {4,5} % VELOCITY CONTROL
 % INPUTS
 CTRL_INPUT.TARGET = single((single(RAW_CH(2))-1500)*(1.4e-

3)); %THROTTLE TARGET %single((CONTROL_OUT.INPUT.TESTING_STEP-

1500)*(1.4e-3));
 CTRL_INPUT.MEASUREMENT = single(SPEED);
 CTRL_INPUT.DERIVATIVE = single(0);
 CTRL_INPUT.INT_STATE = VEL_INT_STATE;
 CTRL_INPUT.DER_STATE = VEL_DER_STATE;
 % PARAMETERS
 CTRL_PARAM.Ts = SAMPLING_TIME;
 CTRL_PARAM.K = CONTROL_OUT.PARAM.VEL_K;
 CTRL_PARAM.Ti = CONTROL_OUT.PARAM.VEL_Ti;
 CTRL_PARAM.Td = CONTROL_OUT.PARAM.VEL_Td;
 CTRL_PARAM.b = CONTROL_OUT.PARAM.VEL_b;
 CTRL_PARAM.N = CONTROL_OUT.PARAM.VEL_N;
 CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.VEL_MAX_CONTROL;
 CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.VEL_MIN_CONTROL;
 CTRL_PARAM.INT_DISC_TYPE =

CONTROL_OUT.PARAM.VEL_INT_DISC_TYPE;
 CTRL_PARAM.DER_DISC_TYPE =

CONTROL_OUT.PARAM.VEL_DER_DISC_TYPE;
 CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.VEL_DER_INPUT;
 CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.VEL_ANTIWINDUP;
 % PID CONTROL
 CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM);
 % OUTPUT: ACCELERATION TARGET
 ESC_PWM(2) = single(((CTRL_OUTPUT.CONTROL)*(1/(1.4e-

3)))+1500);
 % STATE
 VEL_INT_STATE = CTRL_OUTPUT.INT_STATE;
 VEL_DER_STATE = CTRL_OUTPUT.DER_STATE;
 case 6 % PITCH TESTING
 switch TESTING_MODE
 case 0
 case 1

-63-

 if(RAW_CH(7) == 1000)
 %SERVO 1
 ESC_PWM(4) = (1500+300);
 %SERVO 2
 ESC_PWM(5) = (1500+300);
 %SERVO 3
 ESC_PWM(6) = (1800-((1500+300)-1800));
 %SERVO 4
 ESC_PWM(7) = (1800-((1500+300)-1800));
 elseif(RAW_CH(7) == 1500)
 %SERVO 1
 ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_PITCH_PRBS;
 %SERVO 2
 ESC_PWM(5) = CONTROL_OUT.INPUT.TESTING_PITCH_PRBS;
 %SERVO 3
 ESC_PWM(6) = (1800-

(CONTROL_OUT.INPUT.TESTING_PITCH_PRBS-1800));
 %SERVO 4
 ESC_PWM(7) = (1800-

(CONTROL_OUT.INPUT.TESTING_PITCH_PRBS-1800));
 end
 case 2
 if(RAW_CH(7) == 1000)
 %SERVO 1
 ESC_PWM(4) = (1500+300);
 %SERVO 2
 ESC_PWM(5) = (1800-((1500+300)-1800));
 %SERVO 3
 ESC_PWM(6) = (1800-((1500+300)-1800));
 %SERVO 4
 ESC_PWM(7) = (1500+300);
 elseif(RAW_CH(7) == 1500)
 %SERVO 1
 ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_ROLL_PRBS;
 %SERVO 2
 ESC_PWM(5) = (1800-

(CONTROL_OUT.INPUT.TESTING_ROLL_PRBS-1800));
 %SERVO 3
 ESC_PWM(6) = (1800-

(CONTROL_OUT.INPUT.TESTING_ROLL_PRBS-1800));
 %SERVO 4
 ESC_PWM(7) = CONTROL_OUT.INPUT.TESTING_ROLL_PRBS;
 end
 case 3
 if(RAW_CH(7) == 1000)
 %SERVO 1
 ESC_PWM(4) = (1500+300);
 %SERVO 2
 ESC_PWM(5) = (1500+300);
 %SERVO 3
 ESC_PWM(6) = (1500+300);
 %SERVO 4
 ESC_PWM(7) = (1500+300);
 elseif(RAW_CH(7) == 1500)
 %SERVO 1
 ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS;
 %SERVO 2
 ESC_PWM(5) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS;
 %SERVO 3
 ESC_PWM(6) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS;
 %SERVO 4

-64-

 ESC_PWM(7) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS;
 end
 otherwise
 end
 otherwise
end

%% PITCH CONTROL: PID CONTROLLER
switch CONTROL_MODE
 case 5 % Standard work.
 % INPUTS
 CTRL_INPUT.TARGET = single(51.5);
 CTRL_INPUT.MEASUREMENT = single(EULER_ANG(2));
 CTRL_INPUT.DERIVATIVE = single(EULER_RATE(2));
 CTRL_INPUT.INT_STATE = PIT_INT_STATE;
 CTRL_INPUT.DER_STATE = PIT_DER_STATE;
 % PARAMETERS
 CTRL_PARAM.Ts = SAMPLING_TIME;
 CTRL_PARAM.K = CONTROL_OUT.PARAM.PIT_K;
 CTRL_PARAM.Ti = CONTROL_OUT.PARAM.PIT_Ti;
 CTRL_PARAM.Td = CONTROL_OUT.PARAM.PIT_Td;
 CTRL_PARAM.b = CONTROL_OUT.PARAM.PIT_b;
 CTRL_PARAM.N = CONTROL_OUT.PARAM.PIT_N;
 CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.PIT_MAX_CONTROL;
 CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.PIT_MIN_CONTROL;
 CTRL_PARAM.INT_DISC_TYPE =

CONTROL_OUT.PARAM.PIT_INT_DISC_TYPE;
 CTRL_PARAM.DER_DISC_TYPE =

CONTROL_OUT.PARAM.PIT_DER_DISC_TYPE;
 CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.PIT_DER_INPUT;
 CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.PIT_ANTIWINDUP;
 % PID CONTROL
 CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM);
 % OUTPUT: ACCELERATION TARGET
 PITCH_CONTROL = -CTRL_OUTPUT.CONTROL; %Mando invertido para

encajar con modelo (la k es negativa)

 % STATE
 PIT_INT_STATE = CTRL_OUTPUT.INT_STATE;
 PIT_DER_STATE = CTRL_OUTPUT.DER_STATE;
 otherwise
end
 %% ROLL CONTROL: PID CONTROLLER
switch CONTROL_MODE
 case 5 % Normal operation
 % INPUTS
 CTRL_INPUT.TARGET = single(0);
 CTRL_INPUT.MEASUREMENT = single(EULER_ANG(1));
 CTRL_INPUT.DERIVATIVE = single(EULER_RATE(1));
 CTRL_INPUT.INT_STATE = ROLL_INT_STATE;
 CTRL_INPUT.DER_STATE = ROLL_DER_STATE;
 % PARAMETERS
 CTRL_PARAM.Ts = SAMPLING_TIME;
 CTRL_PARAM.K = CONTROL_OUT.PARAM.ROLL_K;
 CTRL_PARAM.Ti = CONTROL_OUT.PARAM.ROLL_Ti;
 CTRL_PARAM.Td = CONTROL_OUT.PARAM.ROLL_Td;
 CTRL_PARAM.b = CONTROL_OUT.PARAM.ROLL_b;
 CTRL_PARAM.N = CONTROL_OUT.PARAM.ROLL_N;
 CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.ROLL_MAX_CONTROL;
 CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.ROLL_MIN_CONTROL;

-65-

 CTRL_PARAM.INT_DISC_TYPE =

CONTROL_OUT.PARAM.ROLL_INT_DISC_TYPE;
 CTRL_PARAM.DER_DISC_TYPE =

CONTROL_OUT.PARAM.ROLL_DER_DISC_TYPE;
 CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.ROLL_DER_INPUT;
 CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.ROLL_ANTIWINDUP;
 % PID CONTROL
 CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM);
 % OUTPUT: ACCELERATION TARGET
 ROLL_CONTROL = CTRL_OUTPUT.CONTROL;
 % STATE
 ROLL_INT_STATE = CTRL_OUTPUT.INT_STATE;
 ROLL_DER_STATE = CTRL_OUTPUT.DER_STATE;
 otherwise
end

 %% POS_Z CONTROL: PID CONTROLLER
% switch CONTROL_MODE
% case 5 % Normal operation
% % INPUTS
% CTRL_INPUT.TARGET = single()
% CTRL_INPUT.MEASUREMENT = single(EARTH_POS_Z)
% CTRL_INPUT.DERIVATIVE = single(EARTH_VEL_Z)
% CTRL_INPUT.INT_STATE = POS_Z_INT_STATE;
% CTRL_INPUT.DER_STATE = POS_Z_DER_STATE;
% % PARAMETERS
% CTRL_PARAM.Ts = SAMPLING_TIME;
% CTRL_PARAM.K = CONTROL_OUT.PARAM.POS_Z_K;
% CTRL_PARAM.Ti = CONTROL_OUT.PARAM.POS_Z_Ti;
% CTRL_PARAM.Td = CONTROL_OUT.PARAM.POS_Z_Td;
% CTRL_PARAM.b = CONTROL_OUT.PARAM.POS_Z_b;
% CTRL_PARAM.N = CONTROL_OUT.PARAM.POS_Z_N;
% CTRL_PARAM.MAX_CONTROL =

CONTROL_OUT.PARAM.POS_Z_MAX_CONTROL;
% CTRL_PARAM.MIN_CONTROL =

CONTROL_OUT.PARAM.POS_Z_MIN_CONTROL;
% CTRL_PARAM.INT_DISC_TYPE =

CONTROL_OUT.PARAM.POS_Z_INT_DISC_TYPE;
% CTRL_PARAM.DER_DISC_TYPE =

CONTROL_OUT.PARAM.POS_Z_DER_DISC_TYPE;
% CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.POS_Z_DER_INPUT;
% CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.POS_Z_ANTIWINDUP;
% % PID CONTROL
% CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM);
% % OUTPUT: ACCELERATION TARGET
% POS_Z_CONTROL = CTRL_OUTPUT.CONTROL;
% % STATE
% POS_Z_INT_STATE = CTRL_OUTPUT.INT_STATE;
% POS_Z_DER_STATE = CTRL_OUTPUT.DER_STATE;
% otherwise
% end

%% CONTROL MIXER

if (RAW_CH(5)>1500)
 %SERVO 1
 ESC_PWM(4) =

((PITCH_CONTROL+ROLL_CONTROL+POS_Z_CONTROL)*250)+1800;
 %SERVO 2
 ESC_PWM(5) = ((PITCH_CONTROL-

ROLL_CONTROL+POS_Z_CONTROL)*250)+1800;

-66-

 %SERVO 3
 ESC_PWM(6) = ((-PITCH_CONTROL-

ROLL_CONTROL+POS_Z_CONTROL)*250)+1800;
 %SERVO 4
 ESC_PWM(7) = ((-

PITCH_CONTROL+ROLL_CONTROL+POS_Z_CONTROL)*250)+1800;
else
 %SERVO 1
 ESC_PWM(4) = (((single(RAW_CH(4))-1500)+(single(RAW_CH(1))-

1500))*(250/600))+1800;
 %SERVO 2
 ESC_PWM(5) = (((single(RAW_CH(4))-1500)-(single(RAW_CH(1))-

1500))*(250/600))+1800;
 %SERVO 3
 ESC_PWM(6) = ((-(single(RAW_CH(4))-1500)-(single(RAW_CH(1))-

1500))*(250/600))+1800;
 %SERVO 4
 ESC_PWM(7) = ((-(single(RAW_CH(4))-1500)+(single(RAW_CH(1))-

1500))*(250/600))+1800;
end
%% CONTROL BUS UPDATE
% TARGET
% CONTROL_OUT.INPUT.EARTH_POS_TARGET = EARTH_POS_TARGET;
% CONTROL_OUT.INPUT.EARTH_VEL_TARGET = EARTH_VEL_TARGET;
% CONTROL_OUT.INPUT.EARTH_ACCEL_TARGET = EARTH_ACCEL_TARGET;
% CONTROL_OUT.INPUT.EULER_ANG_TARGET = EULER_ANG_TARGET;
% CONTROL_OUT.INPUT.EULER_RATE_TARGET = EULER_RATE_TARGET;
% CONTROL_OUT.INPUT.EULER_ACCEL_TARGET = EULER_ACCEL_TARGET;
% CONTROL_OUT.OUTPUT.BLDC.THRUST_FORCES = THRUST_FORCES;
% CONTROL_OUT.INPUT.THROTTLE_TARGET = THR_TARGET;

% CONTROL VARIABLES
CONTROL_OUT.OUTPUT.BLDC.ESC_PWM = ESC_PWM;

return

-67-

CHAPTER 5: STATE MACHINE UPDATE

FUNCTION

This is the code for the simple state machine that controls the RC car.

function CONTROL_OUT = STATE_MACHINE(CONTROL_IN)

%% COPY CONTROL BUS
CONTROL_OUT = CONTROL_IN;

%% TIME UPDATE
% SAMPLING TIME
SAMPLING_TIME = CONTROL_OUT.PARAM.SAMPLING_TIME; % s
% 6-bit SAMPLING COUNTER
SAMPLING_COUNT = CONTROL_OUT.STATE.SAMPLING_COUNT;
SAMPLING_COUNT = SAMPLING_COUNT + uint8(1);
if SAMPLING_COUNT > uint8(63)
 SAMPLING_COUNT = uint8(0);
end
CONTROL_OUT.STATE.SAMPLING_COUNT = SAMPLING_COUNT;
% BOOTING TIME IN MILLISECONDS
TIME_BOOT_MS = CONTROL_OUT.STATE.TIME_BOOT_MS;
TIME_BOOT_MS = TIME_BOOT_MS + uint32(1000*SAMPLING_TIME);
CONTROL_OUT.STATE.TIME_BOOT_MS = TIME_BOOT_MS;
% UNIX TIME IN MICROSECONDS
TIME_UNIX_US = CONTROL_OUT.STATE.TIME_UNIX_US;
TIME_UNIX_US = TIME_UNIX_US + 1e6*double(SAMPLING_TIME);
CONTROL_OUT.STATE.TIME_UNIX_US = TIME_UNIX_US;
AUX = TIME_UNIX_US*2^32;
CONTROL_OUT.STATE.TIME_UNIX_US_LSB = uint32(AUX);
AUX = TIME_UNIX_US - double(uint32(AUX)*2^32);
CONTROL_OUT.STATE.TIME_UNIX_US_MSB = uint32(AUX);
TIMER = CONTROL_OUT.STATE.TIMER;

%% OPERATION MODES
CURRENT_STATUS = CONTROL_OUT.STATE.CURRENT_STATUS;
PREVIOUS_STATUS = CONTROL_OUT.STATE.PREVIOUS_STATUS;
% / 0. BOOTING / 1. SENSOR CALIBRATION / 2. SETTING OPERATION

HEIGHT
% / 3. STANDBY / 4. LOCKED MOTORS / 5. SYSTEM

OPERATION
% CONTROL_MODE:
% / 0. INITIALIZATION / 1. ESTIMATION / 2.

SETTING OPERATION POINT
% / 3. TESTING VELOCITY CONTORL / 4. VELOCITY CONTROL ONLY / 5. FULL

CONTROL
% / 6. MODEL TESTING
% EKF_MODE:
% / 0. NOT ENABLED / 1. PITCH, ROLL AND POS Z
EKF_MODE = CONTROL_OUT.STATE.EKF_MODE;
MOTOR_MODE = CONTROL_OUT.STATE.MOTOR_MODE;
% / 0. % SHUT DOWN / 1. ARMED MOTORS / 2. THROTTLE UNLIMITED /
SENSOR_CALIB_MODE = CONTROL_OUT.STATE.SENSOR_CALIB_MODE;

-68-

% / 0. UNCALIBRATED / 1. CALIBRATING / 2. CALIBRATED /

% INPUTS
SAFETY_SWITCH = CONTROL_OUT.INPUT.SAFETY_SWITCH;
RESET = CONTROL_OUT.INPUT.RESET;
STEERING = single(CONTROL_OUT.INPUT.RCRX.RAW_CH(3));
THROTTLE = single(CONTROL_OUT.INPUT.RCRX.RAW_CH(2));

% STATUS UPDATE
switch CURRENT_STATUS
 %---

 case 0 % BOOTING
 if TIMER >= 3
 NEXT_STATUS = uint8(1); % SENSOR CALIBRATION
 TIMER = single(0);
 else
 NEXT_STATUS = uint8(0); % CURRENT STATUS GOES ON
 end
 % UPDATE TIMER
 TIMER = TIMER + SAMPLING_TIME;
 % CONTROL MODE: INITIALIZATION
 CONTROL_MODE = uint8(0);
 % EKF MODE: NOT ENABLED
 EKF_MODE = uint8(0);
 % MOTOR MODE: SHUT DOWN
 MOTOR_MODE = uint8(0);
 % SENSOR CALIBRATION MODE: UNCALIBRATED
 SENSOR_CALIB_MODE = uint8(0);
 %---

 case 1 % SENSOR CALIBRATION
 if TIMER >= 30
 NEXT_STATUS = uint8(2); % SETTING OPERATION POINT
 % SENSOR CALIBTRIAON MODE: CALIBRATED
 SENSOR_CALIB_MODE = uint8(2);
 % TIMER RESET
 TIMER = single(0);
 else
 NEXT_STATUS = uint8(1); % CURRENT STATUS GOES ON
 % SENSOR CALIBRATION MODE: CALIBRATING
 SENSOR_CALIB_MODE = uint8(1);
 % UPDATE TIMER
 TIMER = TIMER + SAMPLING_TIME;
 end
 % CONTROL MODE: INITIALIZATION
 CONTROL_MODE = uint8(0);
 % EKF MODE: NOT ENABLED
 EKF_MODE = uint8(0);
 % MOTOR MODE: SHUT DOWN
 MOTOR_MODE = uint8(0);

 %---

 case 2 % SETTING OPERATION HEIGHT
 if (CONTROL_OUT.INPUT.DIST_Z>0.051)
 NEXT_STATUS = uint8(3); % STANDBY
 else
 NEXT_STATUS = uint8(2); % CURRENT STATUS GOES ON
 end
 % CONTROL MODE: SETTING OPERATION POINT

-69-

 CONTROL_MODE = uint8(3);
 % EKF MODE: PITCH AND ROLL
 EKF_MODE = uint8(1);
 % MOTOR MODE: ACTIVE
 MOTOR_MODE = uint8(1);
 %---

 case 3 % STANDBY
 if SAFETY_SWITCH
 NEXT_STATUS = uint8(4); % DISARMED MOTORS
 else
 NEXT_STATUS = uint8(3); % CURRENT STATUS GOES ON
 end
 % CONTROL MODE: ESTIMATION
 CONTROL_MODE = uint8(1);
 % EKF MODE: PITCH AND ROLL
 EKF_MODE = uint8(1);
 % MOTOR MODE: SHUT DOWN
 MOTOR_MODE = uint8(0);
 %---

 case 4 % LOCKED MOTORS
 if THROTTLE == 1500 && STEERING == 1500
 NEXT_STATUS = uint8(5); % UNLOCKING MOTORS
 else
 NEXT_STATUS = uint8(4); % LOCKED MOTORS
 end
 % CONTROL MODE: ESTIMATION
 CONTROL_MODE = uint8(1);
 % EKF MODE: EULER ANGLES
 EKF_MODE = uint8(1);
 % MOTOR MODE: SHUT DOWN
 MOTOR_MODE = uint8(0);

 %---

 case 5 % SYSTEM OPERATION
 if SAFETY_SWITCH
 NEXT_STATUS = uint8(5); % ARMED MOTORS
 else
 NEXT_STATUS = uint8(3); % READY
 end
 if RESET
 NEXT_STATUS = uint8(0);
 end
 % MOTOR MODE: ACTIVE
 MOTOR_MODE = uint8(1);
 % CONTROL MODE: RUN (5)
 CONTROL_MODE = uint8(5);
 % EKF MODE: EULER ANGLES
 EKF_MODE = uint8(1);

 %---

 %---

 otherwise
 % NEXT STATUS
 NEXT_STATUS = uint8(3);
 % CONTROL MODE: ESTIMATION

-70-

 CONTROL_MODE = uint8(0);
 % EKF MODE: EULER ANGLES
 EKF_MODE = uint8(1);
 % MOTOR MODE: SHUT DOWN
 MOTOR_MODE = uint8(0);
end

%% CONTROL BUS UPDATE
% UPDATE PREVIOUS STATUS
CONTROL_OUT.STATE.PREVIOUS_STATUS = CURRENT_STATUS;
% UPDATE CURRENT STATUS
CONTROL_OUT.STATE.CURRENT_STATUS = NEXT_STATUS;
% UPDATE OPERATION MODES
CONTROL_OUT.STATE.CONTROL_MODE = CONTROL_MODE;
CONTROL_OUT.STATE.EKF_MODE = EKF_MODE;
CONTROL_OUT.STATE.MOTOR_MODE = MOTOR_MODE;
CONTROL_OUT.STATE.SENSOR_CALIB_MODE = SENSOR_CALIB_MODE;
CONTROL_OUT.STATE.TIMER = TIMER;

