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1. INTRODUCTION 

This project consists of taking a RC car 
prototype with a working active suspension 
system [ALEX11] from a previous thesis 

[JIMÉ16] and upgrading its electronic 
hardware with the goal of being able to 
implement more complex control strategies 
than the hardware was previously capable of. 

This project expects to reduce the gap the 
Comillas Pontifical University has on this field, 
by preparing a working prototype that can be 
used during classes or other projects in this 
field. 

The objectives for this work are the following: 

• Update the electronic components of 
the car, without hampering the 
performance of the active suspension 
system. 

• Program the necessary drivers in 
MATLAB/Simulink for full vehicle 
functionality 

• Identify the necessary models of the 
vehicle in order to design a control 
system. 

The prototype consists of a Turnigy TD10 kit, 
shown in Figure 1, equipped with a custom 
designed active suspension system. 

 

Figure 1: Turnigy TD10 touring car kit 

The upgraded prototype will be powered by a 
Raspberry PI 3 B+ alongside a 4 expansion 
boards from the MikroE family of Click boards 
enabling use of PWM, IMU, ADC and encoder 
capabilities to the Rapsberry Pi. 

This new electronic hardware will work 
alongside the already installed active 
suspension system, a Turnigy XK3650 3900KV 
brushless dc motor, a Turnigy Trackstar 
1/10th 80A Turbo Electronic speed controller 
[MODE19], a 7.2V 2-cell LiPo battery, and four 
Sharp infrared sensors. 

The ADC and encoder modules will require 
programming the driver from scratch, while 
the PWM, IMU and RC receiver have existing 
drivers that can be easily implemented and 
modified if necessary. 

2. METHODOLOGY 

In order to accomplish the objectives of this 
work, the first step was to check the state of 
the prototype. After that any old, 
incompatible, or faulty hardware was 
removed or replaced, work began on installing 
the new components onto the car chassis. 
After all the new hardware was installed, work 
began on preparing and programming the 
necessary drivers for correct functionality of 
all the hardware on board the car. 

Then, work began on identifying the models of 
the vehicle. Unfortunately, due to difficulties 
in obtaining one model and a general lack of 
time, work on designing the necessary 
controls was not started. 

1. Peripheral choice 

The Raspberry Pi is the chosen control unit, 
and while it is capable microcomputer it lacks 
accessories needed to fully operate the RC car 
with its active suspension system. To solve 



 
 

this 4 expansion boards are used alongside 
the Raspberry Pi in order to operate the entire 
system. Thanks to MATLAB’s and Simulink’s 
support package for the Raspberry Pi, setting 
up the necessary communications between 
the Raspberry pi and the boards is quite 
simple. 

The first expansion board is the PWM click 
board which handles all the PWM signals need 
for the suspension servos, direction servo, 
and the Brushless motor. All of this is 
controlled though I2C protocol [CIRC16]. 

The Second expansion board is the ADC3 Click, 
which is a 4-channel analogue to digital 
converter, which receives all the signals from 
the 4 infrared sensors already installed which 
are used for the height measurement of the 
vehicle. This component also communicates 
with the Raspberry through I2C protocol. 

Third expansion board is the Counter click, 
which takes the phase sensor output from the 
brushless motor to count the number of 
revolutions the motor makes, as this output 
matches a quadrature encoder output. With 
this count the model can calculate the true 
speed of the car. This board is controlled 
through the SPI protocol [MIKE17]. 

The last expansion board needed is the MPU 
IMU Click which is an inertial motion unit 
[CHEN94] that has a 3-axis gyroscope 
[DEIM31] and accelerometer [MOHA18], 
finishing the sensors needed for the correct 
operation of the active suspension system. 
This board communicates with the Raspberry 
PI through SPI protocol as well. 

One last electronic component is the FS-A8S 
radio control receiver, which communicates 
with the Raspberry PI through its serial port. 

2. Installation of new hardware 

After checking for faulty hardware, the first 
step was to remove the old electronic 
hardware that will be replaced. In this case it 
was an old Arduino based microcontroller and 
the old radio control receiver which is 
incompatible with the new hardware. 

Afterward the installation of new hardware 
began, correcting the lack of space on the 
chassis by adding an expansion plate to the 
chassis, creating a second level where most of 

the new components were installed. The 
finished result can be seen in figure 2: 

 

Figure 2.: Finished RC car 

3. Software setup 

After all the new hardware is installed, the 
next step starts with setting up all the 
necessary software to control the hardware 
available on the vehicle 

First was setting up the radio control receiver, 
in this case a FS-A8S receiver, which uses the 
IBUS protocol over the Raspberry Pi’s serial 
port. Multiple drone projects use this 
communication protocol, so a working code 
was available and with some changes, the 
component was implemented successfully. 

The next component to setup was the PWM 
click board, which will control all the installed 
motors on the car. This was also simple, as 
another project had utilized this board as well, 
although more changes were needed for it to 
be fully functional. The most important 
changes consisted of correctly assigning each 
channel to each motor and setting the 
servomotor safety limits as it was judged that 
the limits were better set, on the module’s 
code instead of in the main control code. 

The next component configured was the ADC3 
click board. This one required the driver to be 
coded from scratch. First a configuration 
MATLAB .m script was made in order to 
initialize all the initial configuration of the 
board, as well as loading the required I2C 
addresses into memory. Then a Simulink 
model was created with 2 main parts: an 
initialization phase which oversees proper 
initialization of the board, and a main phase, 
enabled once the previous phase is complete. 
The main phase handles the main operation 
loop of the ADC which consists of sequentially 
measuring the output of each infrared sensor, 
reading the data from the ADC and processing 



 
 

it to obtain a measurement in volts. The ADC 
model also includes the small conversion code 
for the infrared sensor. 

Then next board to be implemented was the 
MPU IMU click, this one also had a working 
driver from previous drone projects and was 
implemented with some small changes. The 
code was also setup to work with an Extended 
Kalman Filter (EKF) [SING18] also previously 
coded, with a little setup this was also 
implemented successfully. 

The final board to implement is the Counter 
click board. This one also needed to be coded 
from scratch and follows the same procedure 
as the ADC3 click, a MATLAB .m script file with 
all the necessary address and variables, a 
Simulink model with two phases, one to 
configure the board, and the other for its main 
operation. This board’s main operation 
consists of counting each revolution the 
motor makes, and then each sample time the 
code calculates the difference between the 
count now and during the last sampling time 
to obtain the revolutions per sampling time, 
which is then converted to motor RPM and 
finally the vehicle’s speed in m/s. 

These models are all implemented in a master 
Simulink model which is structured into 3 
categories: HARDWARE, MONITORIZATION, 
and CONTROL. All these sections are tied 
together by a data bus that handles all the 
variables the model needs to function. 

The hardware section contains all the models 
that pertain to using a specific type of 
hardware, the previously mentioned models 
are all included here. 

The monitorization section handles all the 
needed scopes to view the telemetry data 
form the vehicle during operation, relayed 
though the data busses. 

And lastly, the control section contains the 
state machine and the control blocks, these 
are implemented as MATLAB function blocks. 
The state machine guides the code through 5 
self-explanatory states: Boot, Sensor 
calibration, operation point set, standby, 
locked motors and operation. The control 
block handles basic operation like relaying 
receiver commands to the motors as well as 

the control strategies implemented and other 
control critical code like the EKF. 

This master Simulink model is complimented 
by a library of .m scripts that contain all the 
necessary data to initialize the model. These 
are led by the main configuration script that 
when run, loads all the other scripts in order, 
setting up everything from control 
initialization, to the creation of the extremely 
useful data busses. 

One last thing before the identification of the 
models, is the creation of a simple speed PI 
regulator, to ensure that during the tests the 
speed of the car does not fluctuate. This 
regulator was made by simply setting up a 
simple PI, changing the K and Ti between test 
until a satisfactory result was achieved. 

4. Identifying the vehicle’s models 

For the chassis to achieve stability, the active 
suspension system must be able to at least 
control the following variables: 

• Pitch angle of the vehicle 

• Roll angle of the vehicle 

• The vertical acceleration (height) of 
the vehicle 

Therefore, the project needs at least those 
models before the control can be designed. 

To accomplish this a set of 3 test were created. 
The tests consisted of using a PRBS signal 
[JACK71] to control the motions of the active 
suspension system with the goal of only 
having one type of movement, e.g. for the 
pitch test the system only changed the pitch 
angle, etc. The measurements from the IMU 
were recorded and then processed using 
MATLAB’s system identification toolbox to 
calculate a transfer function describing the 
model. 

The results were as follows: 

• The pitch model was identified with 
an 87.96% match 

• The roll model was identified with a 
92.57% match 

• The height model was not identified 
as its match was around the 39% 

 



 
 

Therefore, the height test needed redesigning, 
work began on applying a least squares 
estimation method [GIOR85] when the 
project ran out of time, and as such the height 
model was not identified nor the controls 
designed. 

3. RESULTS 

The results of this work are composed of the 
working prototype alongside the Simulink 
model that controls it. 

The electronics of the car have been fully 
upgraded, with no drawback to the active 
suspension system, and while the car is 
heavier the active suspension system is more 
than powerful enough so that this is not an 
issue. 

The Simulink model created allows for full 
control of the vehicle in manual mode using 
the joysticks on the transmitter to manually 
control the pitch and roll angles, full access to 
all the sensors and measurements the 
electronic system takes, and finally the 
necessary framework so that a control 
scheme can be easily implemented without 
many changes needed to the model as a 
whole. 

4. CONCLUSIONS 

In the end only 2 of the main objectives of this 
work were completed, both of which involved 
completing the RC car prototype and its 
control model, so that the vehicle is 
operational. 

The last objective was not strictly necessary as 
the manual operation shows the full 
functionality of the prototype and previous 
work has demonstrated that this active 
suspension system is effective in stabilizing 
the chassis when driving through irregular 
terrain. 
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1. INTRODUCCIÓN 

Este proyecto consiste en tomar un prototipo 
de coche RC con un sistema de suspensión 
activa [ALEX11] de TFG previo [JIMÉ16] y 
actualizar su hardware electrónico con el 
objetivo de poder implementar estrategias de 
control más complejas de las que el hardware 
era capaz anteriormente. 

Este proyecto espera reducir la brecha que la 
Universidad Pontificia Comillas tiene en este 
campo, al preparar un prototipo funcional que 
pueda usarse durante las clases u otros 
proyectos en este campo. 

Los objetivos de este trabajo son los 
siguientes: 

• Actualizar los componentes 
electrónicos del automóvil, sin 
obstaculizar el rendimiento del 
sistema de suspensión activa. 

• Programar los controladores 
necesarios en MATLAB / Simulink 
para la funcionalidad completa del 
vehículo 

• Identificar los modelos necesarios del 
vehículo para diseñar un sistema de 
control. 

El prototipo consiste en un kit Turnigy TD10, 
que se muestra en la Figura 1, equipado con 
un sistema de suspensión activa diseñado a 
medida. 

 

Figura 1.: Kit de turismos Turnigy TD10 

El prototipo actualizado estará controlado por 
una Raspberry PI 3 B+ junto con 4 tarjetas de 
expansión de la familia MikroE de tarjetas 
Click que permiten el uso de PWM, IMU, ADC 
y encoder a la Rapsberry Pi. 

Este nuevo hardware electrónico funcionará 
junto con el sistema de suspensión activa ya 
instalado, un motor de CC sin escobillas 
Turnigy XK3650 3900KV, un controlador de 
velocidad electrónico (ESC en inglés) 
[MODE19] Turnigy Trackstar Turbo 1 / 10th 
80ª, una batería LiPo de 7.2V de 2 celdas, y 
cuatro sensores infrarrojos de distancia Sharp. 

Los módulos ADC y codificador requerirán 
programar el controlador desde cero, 
mientras que el PWM, IMU y receptora de RC 
tienen controladores existentes que pueden 
implementarse y modificarse fácilmente si es 
necesario. 

2. METODOLOGÍA 

Para lograr los objetivos de este trabajo, el 
primer paso fue verificar el estado del 
prototipo. Una vez desinstalado/remplazado 
todo el hardware viejo o defectuoso, se 
comenzó a instalar los nuevos componentes al 
chasis del coche. Después de instalar todo el 
nuevo hardware, se comenzó a trabajar en la 
preparación y programación de los 
controladores necesarios para la correcta 



 
 

funcionalidad de todo el hardware a bordo del 
automóvil. 

Luego, se comenzó a trabajar para identificar 
los modelos del vehículo. 
Desafortunadamente, debido a las 
dificultades para obtener un modelo en 
específico y una falta de tiempo, no se 
comenzó a trabajar en el diseño de los 
controles necesarios. 

1. Elección de periféricos 

La Raspberry Pi es la unidad de control elegida 
para este proyecto, y aunque es un 
microordenador capaz, carece de los 
accesorios necesarios para operar 
completamente el coche RC con su sistema de 
suspensión activa. Para resolver esto, se 
utilizan 4 tarjetas de expansión junto con a la 
Raspberry Pi para operar todo el sistema. 
Gracias al paquete de soporte de MATLAB y 
Simulink para Raspberry Pi, configurar las 
comunicaciones necesarias entre la placa y las 
tarjetas es muy simple. 

La primera tarjeta de expansión es la PWM 
Click que maneja todas las señales PWM 
necesarias para los servos de suspensión, el 
servo de dirección y el motor sin escobillas. 
Todo esto se controla a través del protocolo 
I2C [CIRC16]. 

La segunda tarjeta de expansión es el ADC3 
Click, que es un convertidor analógico/digital 
de 4 canales, que recibe todas las señales de 
los 4 sensores infrarrojos ya instalados 
utilizados para medir la altura del vehículo. 
Este componente también se comunica con la 
Raspberry a través del protocolo I2C. 

La tercera tarjeta de expansión es el Counter 
Click, que toma la salida del sensor de fase del 
motor sin escobillas para contar el número de 
revoluciones que hace el motor, ya que esta 
salida coincide con una salida del codificador 
de cuadratura. Con este recuento, el modelo 
puede calcular la velocidad real del automóvil. 
Esta tarjeta se controla mediante el protocolo 
SPI [MIKE17]. 

La última tarjeta de expansión necesaria es el 
MPU IMU Click, que es una unidad de 
movimiento inercial (Inertial Motion Unit en 
inglés) [CHEN94] que tiene un giroscopio de 3 
ejes [DEIM31] y un acelerómetro de 3 ejes 
[MOHA18], terminando los sensores 

necesarios para el correcto funcionamiento 
del sistema de suspensión activa. Esta tarjeta 
también se comunica con la Raspberry PI a 
través del protocolo SPI. 

Un último componente electrónico es el 
receptor de radio control FS-A8S, que se 
comunica con el Raspberry PI a través de su 
puerto serie. 

2. Instalación de nuevo hardware 

Después de verificar el hardware defectuoso, 
el primer paso fue desinstalar el hardware 
electrónico antiguo que será reemplazado. En 
este caso, era un antiguo microcontrolador 
basado en Arduino y el antiguo receptor de 
radio control que es incompatible con el 
nuevo hardware. 

Luego comenzó la instalación del nuevo 
hardware, corrigiendo la falta de espacio en el 
chasis instalando una placa de expansión al 
chasis, creando un segundo nivel donde se 
instalaron la mayoría de los nuevos 
componentes. El resultado final se puede ver 
en la figura 2: 

 

Figura 2.: coche RC terminado 

3. Configuración del software 

Después de instalar todo el nuevo hardware, 
el siguiente paso comienza con la 
configuración de todo el software necesario 
para controlar el hardware disponible en el 
vehículo 

Primero fue configurar el receptor de radio 
control, en este caso un receptor FS-A8S, que 
utiliza el protocolo IBUS a través del puerto 
serie de la Raspberry Pi. Varios proyectos de 
drones utilizan este protocolo de 
comunicación, por lo que un controlador 



 
 

estaba disponible y con algunos cambios, el 
componente se implementó con éxito. 

El siguiente componente por configurar fue la 
tarjeta de PWM, que controlará todos los 
motores instalados en el automóvil. Esto 
también fue simple, ya que otro proyecto 
también había utilizado esta tarjeta, aunque 
se necesitaban más cambios para que fuera 
completamente funcional. Los cambios más 
importantes consistieron en asignar 
correctamente cada canal a cada motor y 
establecer los límites de seguridad del 
servomotor, ya que se consideró que sería 
más seguro establecer los limites en el código 
del módulo en lugar del código de control 
principal. 

El siguiente componente configurado fue la 
tarjeta ADC3 Click. Esta requirió que el 
controlador se programará desde cero. 
Primero se realizó un script de configuración 
MATLAB .m para inicializar toda la 
configuración inicial de la tarjeta, así como 
cargar las direcciones I2C requeridas en la 
memoria. Luego se creó un modelo Simulink 
con 2 partes principales: una fase de 
inicialización que supervisa la inicialización 
adecuada de la tarjeta y una fase principal, 
habilitada una vez que se completa la fase 
anterior, que maneja el bucle de operación 
principal del ADC que consiste en medir 
secuencialmente la salida de cada sensor 
infrarrojo, leer los datos del ADC, y 
procesarlos para obtener una medición en 
voltios. El modelo ADC también incluye el 
pequeño código de conversión para el sensor 
infrarrojo. 

Luego, la siguiente tarjeta que se implementó 
fue el MPU IMU Click, esta también tenía un 
controlador funcional usado en proyectos de 
drones anteriores y se implementó con 
algunos pequeños cambios. El código también 
se configuró para funcionar con un Filtro de 
Kalman Extendido (EKF – Extended Kalman 
Filter en inglés) [SING18] también 
programado previamente, con una pequeña 
configuración esto también se implementó 
con éxito. 

La placa final para implementar es la tarjeta 
Counter click. Esta también necesitaba ser 
programada desde cero y sigue el mismo 
procedimiento que el caso de la ADC3 Click, 
un archivo de script MATLAB .m con todas las 

direcciones y variables necesarias, un modelo 
Simulink con dos fases, una para configurar la 
tarjeta y la otra para su operación principal. La 
operación principal de esta placa consiste en 
contar cada revolución que hace el motor, y 
luego, cada tiempo de muestreo, el código 
calcula la diferencia entre el recuento ahora y 
durante el último tiempo de muestreo para 
obtener las revoluciones por tiempo de 
muestreo del motor, que luego se convierte a 
RPM del motor y finalmente a la velocidad del 
vehículo en m / s. 

Todos estos modelos se implementan en un 
modelo maestro de Simulink que se 
estructura en 3 categorías: HARDWARE, 
MONITORIZACIÓN y CONTROL. Todas estas 
secciones están unidas por un bus de datos 
que maneja todas las variables que el modelo 
necesita para funcionar. 

La sección de hardware contiene todos los 
modelos relacionados con el uso de un tipo 
específico de hardware, todos los modelos 
mencionados anteriormente se incluyen aquí.  

La sección de monitorización maneja todos los 
scopes necesarios para ver los datos de 
telemetría del vehículo durante la operación, 
transmitidos a través de los buses de datos. 

Y, por último, la sección de control contiene la 
máquina de estado y los bloques de control 
utilizados. estos se implementan como 
bloques de función MATLAB. La máquina de 
estado guía el código a través de 5 estados: 
arranque, calibración de los sensores, punto 
de operación, espera, motores bloqueados y 
operación. El bloque de control maneja la 
operación básica como transmitir comandos 
del receptor a los motores, así como las 
estrategias de control implementadas y otros 
códigos críticos del control como el EKF. 

Este modelo maestro de Simulink se 
complementa con una biblioteca de scripts .m 
que contienen todos los datos necesarios para 
inicializar el modelo. Estos están dirigidos por 
el script de configuración principal que, 
cuando se ejecuta, carga todos los otros 
scripts en orden, configurando todo, desde la 
inicialización del control, hasta la creación de 
los buses de datos extremadamente útiles. 

Una última cosa antes de la identificación de 
los modelos es la creación de un regulador PI 



 
 

de velocidad simple, para asegurar que 
durante las pruebas la velocidad del 
automóvil no fluctúe. Este regulador se realizó 
simplemente configurando un PI simple, 
cambiando el K y el Ti entre pruebas hasta que 
se logró un resultado satisfactorio. 

4. Identificación de los modelos del vehículo. 

Para que el chasis logre estabilidad, el sistema 
de suspensión activa debe poder al menos 
controlar las siguientes variables: 

• Ángulo de cabeceo del vehículo 
• Ángulo de balanceo del vehículo 
• La aceleración vertical (altura) del 

vehículo. 

Por lo tanto, el proyecto necesita al menos 
esos modelos antes de poder diseñar el 
control. 

Para lograr esto, se creó un conjunto de 3 
pruebas. Las pruebas consistieron en utilizar 
una señal PRBS [JACK71] para controlar los 
movimientos del sistema de suspensión activa 
con el objetivo de tener solo un tipo de 
movimiento durante cada ensayo, por 
ejemplo, para la prueba de cabeceo, el 
sistema solo cambió el ángulo de cabeceo, etc. 
Las mediciones de la IMU se registraron para 
luego procesarlas utilizando la herramienta de 
identificación de sistemas de MATLAB para 
calcular una función de transferencia que 
describa el modelo. 

Los resultados fueron los siguientes: 

• El modelo de cabeceo se identificó 
con una coincidencia del 87.96% 

• El modelo de balanceo se identificó 
con una coincidencia del 92.57% 

• El modelo de altura no se identificó ya 
que su coincidencia era de alrededor 
del 39%. 

Por lo tanto, la prueba de altura necesitaba un 
nuevo diseño, el trabajo comenzó a aplicar un 
método de estimación de mínimos cuadrados 
[GIOR85] cuando el proyecto se quedó sin 
tiempo, y como tal el modelo de altura no fue 
identificado ni los controles diseñados.

3. RESULTADOS 

Los resultados están compuestos por el 
prototipo terminado y su modelo de Simulink 
que lo controla. 

La electrónica del automóvil se ha actualizado 
por completo, sin inconvenientes para el 
sistema de suspensión activa, y aunque el 
automóvil es más pesado, el sistema de 
suspensión activa es más potente de lo 
necesario como para que esto no sea un 
problema. 

El modelo Simulink creado permite el control 
total del vehículo en modo manual utilizando 
los joysticks en el transmisor para controlar 
manualmente los ángulos de cabeceo y 
balanceo, da acceso completo a todos los 
sensores y mediciones que toma el sistema 
electrónico, y finalmente el marco necesario 
para que un esquema de control se puede 
implementar fácilmente sin muchos cambios 
necesarios para el modelo en su conjunto. 

4. CONCLUSIONES 

Al final, solo se completaron 2 de los objetivos 
principales de este trabajo, los cuales 
implicaron completar el prototipo del 
automóvil RC y su modelo de control, de 
modo que el vehículo esté operativo. 

El último objetivo no era estrictamente 
necesario ya que la operación manual 
muestra la funcionalidad completa del 
prototipo y el trabajo previo ha demostrado 
que este sistema de suspensión activa es 
efectivo para estabilizar el chasis cuando se 
conduce por terreno irregular. 
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CHAPTER1: INTRODUCTION 

Since the creation of the first internal combustion engine powered vehicle, and the 

subsequent creation of the automotive industry, Engineers have always strived to design 

vehicles to be, faster, safer, more efficient and comfortable over the years. Driven by 

this wish to create the best transportation experience, engineers have added new 

systems and features to vehicles that there is no comparison between them and the first 

models in 1885. The latest of these new features is autonomous driving, which as its 

name implies, looks to replace the driver with specialized hardware and software to 

allow its passengers to relax, or get some work done while the vehicle takes them to 

their next destination. 

While this concept is not a new one, in the last decade there have been enormous 

advances in the field, spearheaded by Google in 2015-2016, today some high-end, luxury 

models have some type of autonomous driving features, with more complete 

prototypes on the way. The most complete experience belonging to tesla, which in early 

2019 upgraded their autopilot system to a near full-self driving system although still 

requiring the driver to have their eyes on the road due to safety regulations. With a 

possible new paradigm shift in the automotive sector, some companies like ClearMotion 

have started to focus on the main subject of this work, active suspension systems, with 

the idea to complement the rise of self-driving cars. Once driving is out of the equation, 

most passengers will wish to partake on other activities during their commute, such as 

work, reading, or maybe simply watch the scenery pass by, and as many would agree, 

having bumps, potholes or any disturbances to a smooth drive can disturb any of these 

activities highlighting the significance of these systems. 

There are 3 types of suspension: passive, semi-active, and active. Traditional suspension 

systems are passive in nature, they receive the energy from any bumps and other 

disturbances, in order to dampen them reducing their effect on the chassis of the vehicle 

but not being able to fully eliminate them. An intermediate point would be semi-active 

system that changes the dampening depending on the road conditions as picked by an 

array of sensors, with the goal of adjusting the right amount of dampening to every 

situation. Finally, Active suspension systems have actuator allowing them to fight 

against any changes in the pitch, roll, or elevation of the chassis reaching a higher degree 

of stability, unlike passive systems which can only absorb energy and redirect it, active 

systems can also add more thanks to their actuators allowing them to counteract their 

effects [ALEX11], [SHIR19]. 

This project will attempt to upgrade the electronics of an RC car of a previous thesis 

[JIMÉ16], ensuring correct functionality current installed active suspension system with 

the new hardware, creating a new Simulink model to take full advantage of the newly 

added hardware, and applying a simple control strategy to finish. 
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1.1. State of the Art 

Ways to increase the stability of cars have always been in the forefront of engineers’ 

minds, whether to Increase performance on the racing track, or in unforgiving irregular 

terrain, or to simply increase safety and control of their vehicles. Once electronics 

started to shrink and it became viable for them to be embedded in multiple systems, the 

automotive sector was no different. Perhaps one of the more common types of ESC 

(Electronic Stability Control) in today’s cars is the Traction Control System or TCS 

[AZUM19], which detects possible losses in traction and automatically applies brakes or 

cuts engine power to prevent them, increasing stability and safety during the ride. 

Active suspension systems operate differently, instead of changing the user’s input they 

actively change parts of the suspension to counter any unwanted force or disturbances 

that may occur during driving.  One of the first examples of an active suspension system 

in consumer vehicles came in the form of the SC-CAR (or Citroën’s Active Roll control 

system in English) in Citroën’s Xantia Activa model in 1994, and consisted of an active 

Anti-Roll bars using a hydraulic system that stiffens or loosens the Anti-Roll bar 

depending on instructions from the ESC, fighting the roll of the car during turns 

increasing stability, but only for the roll of the vehicle. 

The first complete active suspension system was introduced in 1999 with Mercedes-

Benz’s Active Body Control (ABC) introduced in their Mercedes-Benz CL-Class C215. 

Their ABC system consisted of telescopic hydraulic actuators that increase or lower the 

height of each wheel depending on the wide array of sensors in wide array of sensors 

on the vehicle, keeping the vehicle level. The system also allowed for height adjustable 

suspension and self-leveling suspension with user selectable profiles to adapt the 

suspension depending on the requirements of the drive and the comfort of the user, 

allowing for better fuel consumption and handling thanks to a better adjusted 

aerodynamic profile. Later, Mercedes-Benz would introduce the concept of PRE-SCAN 

suspension, taking the system of Active Body Control and adding LIDAR sensors to 

anticipate bumps or potholes on the road, allowing the vehicle to pre-emptively adjust 

the suspension instead of simply reacting to it once it reaches it. 
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Figure 1.1.: Mercedes-Benz’s Active Body Control system concept 

The PRE-SCAN + ABC concept would later evolve into the Magic Body Control system 

first seen in Mercedes-Benz’s S-Class (W222) model released in 2013. Using a stereo 

camera instead of LIDAR technology, the Magic body control system can scan up to 15m 

of the road ahead of the vehicle and adjusts the system accordingly. 

Mercedes-Benz’s hydraulic actuators are not the only active suspension system around. 

BOSE has been working on Project Sound which had its first unveiling in 2004 installed 

in a Lexus LS 400, their system replaces the typical shock absorbers with a linear 

electromagnetic motors (LEM), thanks to their speed, a sophisticated sensor system to 

scan the road ahead and a sophisticated control system BOSE’s system makes any road 

bumps, tilting due to braking or acceleration virtually un noticeable, to the point of 

looking unreal in their video showcasing the system. Unfortunately, BOSE was unable to 

reach production status for this system due to the economic recession of 2008 and 

coupled with the fact that their LEM were bulky and expensive to make. 

 

 

Figure 1.2.: BOSE’s bulky Linear electromagnetic motors 

ClearMotion would later buy Project Sound, combining BOSE’s road sensing and control 

software with their own active valve dampeners, replacing BOSE’s linear 
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electromagnetics motors. Their digital chassis system is set to reach mass production in 

2019 With the goal of targeting the autonomous vehicle market. 

1.2. Work motivation 

The main motivation for this project is to have a working active suspension system for 

the advance control classes in the post-grad programs of the university, creating more 

interest in a field which shows a lot of promise in the coming years, especially for 

consumers of autonomous vehicles. 

This project will take the active suspension prototype made in a previous thesis [JIMÉ16] 

and update its electronic hardware with the goal of allowing more sophisticated control 

schemes to be implemented on the prototype, and greater ease of use of the prototype 

in future investigations. 

 

1.3. Objectives 

• Update the electronic control hardware installed in the prototype, without 

affecting the active suspension system installed. 

• Setup a Simulink model that allows the newly installed hardware to operate the 

entirety of the RC car effectively allowing for more sophisticated control 

schemes to be implemented. 

• Setup a basic control system to test the active suspension system in the RC car 

with the new hardware. 

 

1.4. Methodology / Designed Solution 

First to remove the old electronic hardware installed onto the prototype car, mainly the 

old Ardupilot microprocessor and the Walkera receiver. Then all mechanical 

components of the prototype are checked for faults, ensuring that all mechanical 

aspects of the prototype are working properly.  

Then an expansion plate is installed to provide more space for the new electronic 

components to be installed, alongside all the necessary cables. Each new component is 

then tested and calibrated. 

Then the real models are obtained by running the appropriate tests and using MATLAB’s 

system identification toolbox. Once the models are identified, appropriate control 

strategies will be designed to achieve a smooth operation of the active suspension 

system, leading to a stabilized chassis for the prototype. 
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Once the controls are in place, a final round of tests are made in order to collect the 

results of the project and reach a conclusion. 

 

1.5. Resources / Materials applied 

• Software 

o MATLAB 2018b 

o Simulink 

o PuTTY 

• Hardware 

o Computer with the previously mentioned software 

o Turnigy TD10 RC touring Car chassis, with Turnigy motor and ESC and 

installed with the previous active suspension system design and infrared 

sensors 

o LiPo Battery 2-cell battery with voltage regulator for Raspberry PI 

o FlySky Radio control transmitter with corresponding receptor 

o Raspberry PI with a 16gb SD card with the MathWorks Raspbian OS image 

o PI-Ez Connect Shield board 

o PI click Shield board 

o ADC click board 

o Counter Click board 

o PWM click board 

o IMU click Board 

o Pololu Expansion plate 
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CHAPTER 2: DESCRIPTION OF MECHANICAL 

COMPONENTS 

2.1. RC Prototype chassis: Turnigy TD10 

The Radio control car kit chosen for the project is the Turnigy TD10 touring car Kit, a 

chassis designed for hobbyists that wish to set up their vehicle for a fraction of the cost 

of a new complete RC car setup. The kit consists of the chassis for the car complete with 

a transmission and suspension system and space for the battery, brushless motor, ESC, 

direction servo, and a microprocessor to control it all. 

 

 

Figure 2.1.: Turnigy TD10 Kit and specs. 

This kit was also chosen for its sports design over a more all-terrain type vehicle, as those 

vehicles have suspension better suited for irregular terrain and the changes to the 

suspension would not be as noticeable. It also has the advantage of having a suspension 

system like a normal car, making the project more appropriate for a consumer release. 

 

2.2. Mechanical design of the active suspension system 

As mentioned in the previous thesis on this project, the active suspension design is a bit 

unconventional. Typical active suspension setups for RC cars place the servos parallel to 

the floor the servos taking the weight of the car radially. The setup then uses small 

plastic pieces attached to the servo to move the shock coils up and down, changing the 

wheel height to adapt to the terrain, as shown in the image below [reference to image] 
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Figure 2.2.: Common active suspension setup. 

Unfortunately, a stress analysis of this setup shows that if the car were to take a 

significant bump or takes multiple bumps at a decent cruise speed the servo’s gears will 

take most of the shock, if they do not break outright, the repetitive stress would fatigue 

the parts enough for them to be more prone to failure in the future.  That’s not 

mentioning the fact that the servo arms could begin to warp after enough abuse from 

irregular terrain any decent speed, this is especially important this time around as the 

new hardware installed onto the car increases its weight enough to make this a 

significant problem. This design is only useful for smooth tracks designed for racing, 

looking to increase the stability of the vehicle during turns and as such does not consider 

these drawbacks too significant. 

To solve this, the designed proposed in the previous report uses a semi cylinder design 

which allows the servomotor axis to be perpendicular to the ground, absorbing any 

stress axially instead of radially, protecting the servo’s gears as the stress passes onto 

the chassis which is more than capable of absorbing these quick shocks. The semi 

cylinder parts are also larger and work axially, avoiding any warping during high periods 

of stress. 

 

 

Figure 2.3.: Active suspension system installed on the Prototype. 
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Thus, this project will keep this design moving forward after explaining the decisions 

taken in their design. 

 

2.2.1. FRONT AND REAR SHELVES 

The shelves act as holders for the suspension servomotor and the actuator arms, 

allowing the servomotors to rest in the correct position and the actuator arms to move 

freely through a plain bearing and 2 washers. They are designed to be affixed to the 

vehicle using 4 metric 3 screws just like the suspension supports of the vehicles that 

were removed.  Both shelves are designed to fit perfectly with the rest of the kit, 

avoiding any collisions with any moving parts during operation. The main difference 

between each shelf is the extra slot to accommodate the front differential. The following 

images are renders of both shelves: 

 

 

Figure 2.4.: Front shelf render. 

 

Figure 2.5.: Rear shelf render. 
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2.2.2. SEMI CYLINDER ACTING AS THE SERVO’S ARM 

As mentioned before, the servo arms need redesigning to be able to withstand the 

irregular terrain the vehicle might encounter as well as lowering or raising the wheels as 

needed. This was accomplished by designing cylinders cut by an oblique plane in such a 

way that the surface allows the entire 180º of rotation from the servomotor to be 

transformed into a near vertical linear translation, if an appropriate actuator arm is used. 

With this arm, as the servo arm rotates the actuator arms gets pushed down, shifting 

the position of the wheel downwards as well and lastly raising the chassis which is the 

end goal. Clearly if the rotation is in the opposite direction the chassis lowers as the 

wheels are “raised” upwards due to the actuator arm not being pushed as much. 

 

 

Figure 2.6.: Servo arm render. 

Evidently the second servo arm is the mirror image of the first, the suspension uses 4 of 

these arms, one for each wheel.  

 

2.2.3. ACTUATOR ARMS 

This is the last piece in the suspension system designed for this project, it consists of an 

3d printed arm that is attached in one end to the shelf using 2 washers and a plain 

bearing to allow rotation around that axis. The one end of the shock coil is screwed into 

the middle of the arm and lastly the arm ends on a point where it makes contact with 
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the servo arm, working as described in its section of this document, and with this last 

piece in each wheel the car has a working active suspension. 

 

 

Figure 2.7.: Actuator arm render. 

Although that initial design had some kinks. The main problem was the fact that the 3D 

printed point would wear out the servo arms and itself very quickly as 3D materials tend 

to be rough creating too much friction between the pieces, this was solved by designing 

and adding a bronze point cover to the actuator arm reducing the friction between the 

pieces and increasing the durability of both pieces.  

 

2.3. Servomotors Installed 

The servomotors chosen for the suspension system are the Turnigy 380mg Micro 

servomotors. These micro sized servos were chosen for their small size, low voltage 

requirements (as the previous micro controller was only capable of 5V), and finally for 

their sturdy construction, the servos make use of metal and carbon gears making them 

sturdier than standard servos. This is a bit unnecessary as the new suspension system 

reduces the stress placed on the servos but chosen anyways for increased reliability. 

These servos are also more than capable of lifting the car up and down thanks to their 

4.2kg/cm stall torque when powered at 6V, allowing them to easily act as the active 

suspension for the vehicle 
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Figure 2.8.: Turnigy 380mg Micro servomotor. 

 

2.4. Motor, ECS Installed 

The motor installed on the RC car is the one of the manufacture’s recommended motors 

for the TD10 kit, a Turnigy XK3650 3900KV brushless dc inrunner Sensored motor. The 

3900KV does not stand for Kilovolts but instead denotes the RPM the motor gives per 

volt; thus, this motor specifically gives 3900 RPM for each volt given to it, which is more 

than capable for the project. 

 

 

Figure 2.9.: Turnigy XK3650 3900KV motor 

A 3-phase motor like this one requires an ESC (Electronic Speed Controller) to function 

properly as the 3 phases need to be managed properly for the motor to work at all 

[MODE19]. The motor also has an output for ESC for telemetry, the sensor connection 

transmits the state of the phases in the motor as well as it’s temperature for the ESC to 
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cut off the motor when it reaches high temperatures. This can be seen in the following 

images with the wiring specifics that apply to this motor: 

 

 

Figure 2.10.: Sensored brushless wire specifications 

The ESC chosen is the recommended one for this motor a Turnigy Trackstar 1/10th 80A 

Turbo Sensored ESC, which is more than enough to power the car and the all its installed 

servomotors thanks to its built in BEC (Battery Eliminator circuit), which as its name 

implies, is designed to replace the need of separate batteries in RC vehicles in case you 

need different voltage requirements. Unfortunately, the processor driving the program 

on the vehicle requires 5V and therefore another voltage regulator is necessary to power 

the rest of the components installed. The following image has the details on the ESC’s 

Stats. 

 

 

Figure 2.11.: Turnigy Trackstar 1/10th 80A Turbo Sensored ESC with specs 

One thing to note, this ESC requires a separate programmer in order to customize 

specialized options such as turbo timing and different operation modes. The 

programming box used is the Turnigy TrackStar Turbo and Waterproof ESC Programming 

Box with the following options for this ESC: 
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Figure 2.12.: Turnigy TrackStar Turbo and Waterproof ESC Programming Box with available options. 
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2.5. Infrared sensors 

 

 

Figure 2.13.: Sharp GP2Y0A51SK0F infrared sensor 

For the infrared sensors needed in the vehicle, the project uses 4 Sharp GP2Y0A51SK0F 

infrared sensors as they are easy to use, simply requiring power and an ADC to see the 

resulting value. The infrared once powered takes around 21ms before its output 

represents the distance measured, taking around 16.5ms to update the measurement 

as shown in the following image: 

 

 

Figure 2.14.: Infrared sensor measurement timing 

Once the measurement is taken using an ADC, it can then be converted into the needed 

distance by simply looking up the value to the following diagram: 
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Figure 2.15.: Voltage output vs Distance in cm from the sensor 

This diagram is programed into the Simulink model using the lookup table block, in which 

we can add the values from the diagram above and allow the model to compare the 

voltage value received from the ADC and obtain the needed measurements. The lookup 

table set up can be seen in the following image 
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Figure 2.16.: Look up table setup. 

The model used in the Simulink system is the following: 

 

 

Figure 2.17.: Infrared sensor’s Simulink model. 

The model uses the aforementioned lookup tables and then simply converts the 

measurement from cm to m and then saves them into the control BUS for use elsewhere 

in the model, the infrared sensors on the back of the RC car are at slightly different 

heights than to front sensors, hence the added 5 and 2mm added to the measurements 

in the model. 

To mount the front sensors, a front bumper was designed to hold the 2 sensors on the 

front of the vehicles, a render can be seen in the following image: 
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Figure 2.18.: Front bumper render 

As seen above, the piece has 2 slots for the sensors just Infront of the wheels for the 

active suspension to anticipate changes in the terrain. The rear sensors can just be 

attached to the rear shelf using double sided tape in a secure and accurate manner, so 

no new pieces are required, although they are slightly higher than their front brothers 

which is addressed in the code described before. 
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2.6. Testing tracks 

To test the vehicle 2 sets of testing tracks were made, one set made with a height 0.8cm 

between the ground and the top of the bump (about 30% of the wheel height), and the 

other is 0.5cm height. Each set is made of 2 sheets of aluminum, each with the same 

bumps so that we can set up the track for regular bumps or irregular bumps, depending 

if the tracks are aligned or not when setup. The tracks were made using a bending 

machine [reference?] having the slopes be 3cm long and the tops of the bumps 6cm 

long. The high bumps testing track can be seen below in both regular and irregular 

terrain configurations: 

 

 

Figure 2.19.: The high bumps testing tracks aligned, for regular bumpy terrain. 

 

 

Figure 2.20.: The high bumps testing tracks misaligned, for Irregular bumpy terrain. 
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2.7. Pololu RP5 Expansion plate 

Before any of the new electronic components can be installed, the prototype needs 

more space to support them. To solve this, an expansion plate is installed creating a 

second level to the vehicle were all the rest of the electronics components can be 

installed onto. The plate used is the Pololu RP5/Rover 5 Expansion Plate RRC07B 

 

 

Figure 2.21.: Pololu RP5/Rover 5 Expansion Plate. 

This plate is drilled with 3mm slots allowing easy installation of most electronic boards 

with 3mm screws and nuts, allowing the installation of new hardware without getting in 

the way of the locomotive parts of the vehicle as well as it’s active suspension system. 
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CHAPTER 3: ELECTRONIC HARDWARE 

COMPONENTS INSTALLATION AND SOFTWARE 

SETUP 

3.1. RASPBERRY PI 3 B+ 

 

 

Figure 3.1.: Raspberry Pi 3 B+ 

The board chosen to control all the new and old components used in the RC Car is the 

Raspberry PI 3 B+, that at the time of the project start was the latest and most capable 

product of the Raspberry Pi Foundation. 

This microcomputer is one of the more affordable options of its class, capable as well as 

being extremely easy to use with Simulink as it has an official support toolbox allowing 

access to all the GPIO (General Purpose I/O) pins and communications capabilities of the 

Raspberry PI 3 B+. 

The main advantage of using this microcomputer instead of the specialized ArduPilot 

microprocessor used previously, is the computing power, the 1.4GHz 64-bit quad-core 

processor dwarfs the ATmega2560 used in the Ardupilot, allowing for more complex 

control strategies to be implemented.  

However this comes at a tradeoff, a microcomputer is designed to be a cheap computer 

replacement and consequently, it does not have some of the integrated peripherals our 

previous microprocessor had, especially since the Ardupilot was designed for RC control: 

it has no analog inputs therefore it cannot use the infrared sensors already installed, nor 

does it have an integrated IMU for all the necessary angle measurements needed for 
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the control strategies, it also does not have the same facility in handling all the PWM 

channel inputs from the installed receiver and all the PWM outputs. Thus, it is necessary 

to include extra boards to extend the capabilities of the Raspberry. These extra boards 

communicate with the Raspberry through the integrated communication options of the 

Raspberry: serial, I2C [CIRC16], and SPI [MIKE17], and after an initial configuration these 

peripherals work just as well as the previous integrated solutions. 

The main reason for swapping out the old microprocessor is the official 

MATLAB/Simulink Support Package for Raspberry PI hardware, which includes a 

customized Raspbian OS image designed to work alongside MATLAB and Simulink 

allowing for Simulink models and code to be run in external mode, allowing changes to 

parameters during code execution and monitoring of all the sensors and internal 

parameters to simplify code creation as all data can be seen in real time, greatly 

simplifying the programming process. 

 

3.2. MikroE Click boards 

The family of expansion boards chosen to increase the Raspberry PI’s capabilities is 

MikroE’s family of Click boards [add reference] which use the mikroBUS Socket standard 

[reference] to create a modular set of boards that can be easily added and swapped out 

as long as they use the mikroBUS socket. 

 

3.2.1. PI 3 SHIELD CLICK, SHUTTLE CLICK AND MIKROBUS SHUTTLE 

BOARDS 

 

 

Figure 3.2.: PI 3 Shield click 
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This shield board is the basic requirement to make the Raspberry Pi compatible with any 

of the click boards, as it provides 2 mikroBUS sockets and connects them onto the 

Raspberry PI’s 40-pin header providing everything needed for any mikroBUS compatible 

boards to function, by simply providing direct connections between the Raspberry’s 

GPIO pins and the mikroBUS sockets in order to connect the click boards directly to the 

raspberry.  

 

              

Figure 3.3.: Shuttle click on the left, mikroBUS Shuttle to the right. 

This project will use 4 different click boards; thus, the project needs more sockets to 

accommodate them all. For this the project will use the Shuttle click socket expansion 

board which has 4 standard 16-pin connectors to add up to 4 mikroBUS Shuttles which 

are satellite boards where click boards can be plugged in using 16-pin flat Ribbon cables. 

With these 2 boards we can expand the number of sockets available to the Raspberry PI, 

the project specifically requires 4 mikroBUS Shuttles and 2 Shuttle Clicks, due to some 

incompatibilities between the click boards used on the RC Car. 
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3.2.2 ADC3 CLICK 

 

 

Figure 3.4.: ADC 3 Click board 

The ADC3 Click board uses a MCP3428 ADC wired to the mikroBUS Socket and to 8 

solderless connectors. The MCP3428 is a 16-bit, 4-channel differential Analog-to-Digital 

converter that communicates through I2C protocol which makes it a breeze to use with 

the Raspberry PI installed. The project uses this ADC to read the analog values from the 

infrared distance sensors installed on the RC Car, as the ADC uses differential input each 

IR sensor’s signal is connected to the positive terminal while a ground connection is used 

on the negative terminal. This ADC has an internal voltage reference of 2.048V and 

consequently it cannot read any voltage signal larger than the [Vref], luckily this voltage 

is only reached when the distance is smaller than around 2 cm, which during normal 

operation the sensors will not reach those values. 

The MCP3428 is configured to use the one-shot conversion mode and, 12bits for the 

sample resolution size, samples per second are irrelevant in one-shot conversion mode, 

as the ADC only makes a measurement when prompted by the Raspberry, nevertheless 

the setting is set to 240SPS as a value is needed for the configuration command. The 

MCP3428 in one-shot conversion works by taking a measurement as long as a Ready bit 

in its configuration  register is set to 0, when set to one manually it retakes the 

measurement, this allows for the user to take measurements when needed and 

conserve some power. As the project needs to measure all 4 channels, instead of just 
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changing the Ready bit, the entire configuration byte is sent in order to reset the ready 

bit and change the channel to measure with the goal of measuring each channel 

sequentially. 

To command and receive the converted values from the ADC the following Simulink 

model was used:  

 

 

Figure 3.7.: ADC configuration model 

 

 

Figure 3.6.: ADC read model 

The Simulink model performs 4 functions: first the model initializes the ADC board by 

writing the configuration byte to the ADC board through the Raspberry I2C Master Write 
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block and checks for the status of the write. If successful the model moves on to the 

main control loop for the board which consists of sending a configuration byte 

corresponding to the channel to be read, then requests the measurement from the ADC 

and finally converts the output into first volts, and then it’s sent to the infrared’s model 

for conversion into the necessary units. 

 

3.2.3 PWM CLICK  

 

 

Figure 3.7.: PWM Click board. 

The PWM click consists of a PCA9685PW chip, which is an I2C-bus controlled 16-channel 

LED controller optimized for RGBA color applications, wired to the necessary mikroBUS 

socket and to 30 male header pins, giving access to all the outputs the chip needs. Even 

though the chip is designed for LED control, it still outputs easily controllable PWM 

signals which work with any PWM driven peripherals, including all the motors installed 

on the RC Car: the 4 servomotors that drive the active suspension, the single direction 

servomotor and the ESC which in turn controls the Brushless motor. [If to this point 

PWM Signals haven’t been introduced, do so] 

The PCA9685PW requires 3 configuration registers to be setup before any of the PWM 

channels can be used, the MODE1 and MODE2 registers store the operation 

configuration of the board, such as whether sleep mode is activated, and if auto increase 

is activated. The last register is the PWM pre-scaler, which allows to quickly change the 

frequency of the PWM signal, in this case the motors need 50Hz.  
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After the operation registers are configured, the board requires the duty cycle of each 

PWM signal in order to generate them, this is set up using the LEDx_ON and LEDx_OFF 

registers. These 12bit registers hold a value between 0-4095, where 0 represents the 

start of the cycle and 4095 represents the end of the cycle, they are also split into most 

and least significant 4bit and 8bit registers respectively and the x represents the channel 

the registers control. The chip needs the duty cycle to be inputted by specifying the 

period in which the PWM signal is Vcc each cycle as shown in the next figure from the 

chip’s datasheet 

 

 

Figure 3.8.: PWM signal diagram 

Using the registers and simple math any duty cycle can be replicated in the board. 

The model used to control the board is shown in the next figure  

 

 

Figure 3.9.: PWM control model 

After writing the configuration registers, this model simply converts the values received 

from the control program and converts them into instructions that can be loaded into 

the PCA9685PW LED. Before the signals are converted the program checks if the 

instructions form the controls are within the operation range of the motors, and 

switches around the signals into their appropriate channels. Once everything is prepared 

the PWM_BYTES function translates the μs used in RC equipment into the ON and OFF 

counts for each channel and it gets written in the respective register using the I2C 

Master Write block. 
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3.2.4. COUNTER CLICK 

 

 

Figure 3.10.: Counter Click board 

The Counter Click board uses a LS7366R Chip a 32-bit quadrature counter, designed to 

be used in conjunction with quadrature encoders and communicates though the SPI 

protocol. While the project does not use one of those encoders, the ESC that controls 

the motor has a sensor plug that includes the state of the 3 phases used to drive the 

motor, which can be used like the output of an incremental quadrature encoder as 

shown in the following image: 

 

 

Figure 3.11.: Motor phase sensors 
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The sensor signals of the ESC are square and out of phase 90deg, which is the exact input 

the counter is expecting. Thus, the counter can count the number of revolutions the 

brushless motor does as its rotation depends on the state of the 3 phases driving the 

motor. With the number of rotations stored in the counter, the code can then calculate 

the difference between counts each sampling period to calculate the number of 

revolutions per second the brushless motor makes, allowing the program to know the 

exact speed of the car after taking into account the gear ratios between the motor and 

the wheels and wheel diameter to calculate the speed of the car in m/s. This can be seen 

in the following Simulink models: 

 

 

Figure 3.12.: Model for initializing the counter board. 

First the program initializes the board, the LS7366R ha 2 mode registers to configure, 

MDR0 controls the whether the counter uses the quadrature counting mode, if it’s in 

free-running mode, and whether the index input is activated among other things that 

can be seen in the chips datasheet {reference}. MDR1 controls the number of bytes the 

counter uses, whether counting is enabled and allows the user to enable several flags to 

monitor the counter. For this project, the LS7366R is configured in x1 quadrature, free-

running mode with the index pin disabled and using 3 bytes for the count. One last detail 

about the counter is that the counter has an enable pin which must be set to Vcc for the 

counter to count, this leads to a GPIO conflict with the PWM click board as the enable 

pin is mapped to the same mikroBUS Socket pin if both boards are connected to the 

same Shuttle click board as the PWM click needs  0V in that pin. Therefore, the car has 

2 Shuttle clicks to avoid placing both boards on the same mikroBUS socket. 
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Figure 3.13.: Model for Counter processing 

After a proper initialization of the counter board, the program requests each sampling 

period the current count of the counter, calculates the difference with the previous 

count, converts the number into revolutions per minute, and filters the number to get a 

steady value. After that a small MATLAB function converts the RPM into m/s which is 

then stored in the control bus for use elsewhere in the program. 

 

3.2.5. MPU IMU CLICK 

 

 

Figure3.14.: MPU IMU click board 

The MPU IMU Click board is composed of an MPU-6000 chip, this Inertial Motion Unit 

(IMU) [DEIM31] chip is one of the first to contain a “Motion processing unit” that 

includes a 3 gyroscopes, one for each axis, and a 3 accelerometers in a single chip, 

alongside the needed computing power to calculate all the changes in the object’s 

angular or perpendicular acceleration, measurements which are essential for the project. 

This board also can communicate through I2C or SPI, with the latter being the protocol 

used in this case. 

An accelerometer detects changes in the proper acceleration of a given object, in this 

case the RC car [MOHA18]. This IMU has 3 accelerometers which allows it to measure 

changes in acceleration in each of the 3 axes of the car, in a proper frame. Out of these 

axes the program only needs the vertical acceleration to measure changes in the height 

of the car alongside the infrared sensors. 

A gyroscope is a device that detects changes in the angular acceleration of the object 

it’s affixed to, allowing the program to keep track of the orientation of the vehicle and 

react accordingly [DEIM31]. The IMU has 3 gyroscopes, one for each of the axis: pitch, 
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roll, and yaw. The program only needs pitch and roll, which are affected by the 

movement of a vehicle in irregular terrain. 

Most of the code for this specific IMU chip was already made for other drone projects, 

so it was easily repurposed and implemented onto this project 

The IMU’s data measurements registers can be accessed using the Raspberry’s SPI 

communication blocks, the data output from the IMU is then processed into rad/s^2 and 

m/s^2 respectively and lastly it is processed by the IMU calibration function block which 

as long as the calibration is activated in the program it will calculate the offsets of the 

IMU measurements, although the RC Car should be level during this calibration for the 

measurement to be accurate. After calibration the block simply removes the offset from 

the IMU measurements and saves the measurements to the control data bus. 

IMU also takes advantage of a previously designed Extended Kalman Filter (EKF) 

[SING18] designed for it. An EKF is a type of predictive filter that estimates the next 

measurements in order to calculate a weighted average with the measurement, 

hopefully reducing the noise or errors in the measurement. An EKF is the non-lineal 

version of a Kalman filter, and due to the linearization needed it no longer is a optimal 

estimator and therefore there can be errors in estimation causing the measurements to 

diverge from the true value. Nevertheless, it gives out a reasonable performance making 

it the de facto standard for GPS and most navigation systems and its performance with 

the prototype is quite noticeable. 

 

3.3. PI EzConnect 

 

 

Figure 3.15.: Pi-EzConnect shield 
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Before installing the PI 3 Click shield, the project needs a way to access some of the 

Raspberry’s GPIO pins, namely the dedicated serial pins, and unfortunately the PI 3 Click 

shield takes up the entirety of the Raspberry’s 40-pin header without providing a 

passthrough for other boards to use. To remedy this, the project uses the PI EzConnect, 

which is a prototyping shield board which provides solderless connections to all of the 

Raspberry PI’s GPIO pins, as well as GPIO solder points for more permanent connections, 

and finally in has a breadboard sections were standard male or female headers can be 

soldered for a compact breadboard section. 

This project only makes use of the solderless points, as the PI EzConnect is sandwiched 

between the Raspberry Pi and the Shield Click, and there is very little clearance to solder 

the headers and connect the cables. 

 

3.4. Receiver and transmitter combo 

3.4.1. FLYSKY FS-A8S RECEIVER & FS-I6S TRANSMITTER COMBO 

 

 

Figure 3.16.: FS-A8S receiver 

To control the RC car, we need a controller with a transmitter and a corresponding 

receiver connected to the Raspberry PI to relay those commands, the receiver chosen is 

the FS-A8S made by Flysky. Designed with aerial drones in mind, the FS-A8S is 2.4GHz 

receiver using 8 channels with standard PPM or 18 channels with IBUS. PPM stands for 

Pulse-Position Modulation and in the field of hobbyist radio control a PPM signals looks 

like miniature PWM signals all sent together. A PPM frame is 22.5ms long and is 

composed of a total of 9 pulses separated by 3ms spaces, 8 of which are for each one of 

the 8 channels it transmits, each pulse ranging from 0.7ms to 1.7ms and the final is for 

the start pulse which is as long as need to get the total frame length of 22.5ms. This 

setup allows the receiver to only use three wires to relay the controller data alongside 

as the necessary ground and Vcc wires, a big advantage over the previous PWM protocol 
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which has a set of 3 wires per each channel to relay to the vehicle. A typical PPM frame 

can be seen in the following image taken form [MFTE19] 

 

 

Figure 3.17.: PPM frame scheme 

IBUS is a relatively new protocol by Flysky and it’s their version of the SBUS protocol 

introduced by Futaba mostly used nowadays by Futaba itself and FrSky. As its name 

might imply it consists of a digital serial protocol. IBUS communicates using serial UART 

and allows for two-way communication between the receiver and the transmitter 

allowing the vehicle in question to send battery, speed and other telemetry data back 

to the user, unfortunately the FS-A8S is a one-way receiver so this cannot be 

implemented.  IBUS supports up to 18 channels with any compatible transmitter and 

receiver combo. 

The project will be using the FS-A8S through I-BUS as it’s easier to implement with the 

Raspberry Pi than PPM, due to the Pi already having a serial port and corresponding 

serial read blocks from its toolset, making it trivial to access the controller’s data stream 

and commands once the transmission is parsed for each channel’s values. 

 

 

Figure 3.18.: FS-I6S transmitter 

The transmitter used alongside the FS-A8S is the FS-I6S, another Flysky product in order 

to capitalize on the proprietary IBUS protocol. The FS-I6S is a 10 channel 2.4 GHz receiver 

which is more than enough for the current project, as only 6 of those channels will be 

used as follows: 
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• Channel 1: Represents the right X-axis stick which handles manual control of the 

rear suspension servos 

• Channel 2: Represents the right Y-axis stick which handles the Vehicle’s throttle 

• Channel 3: Represents the left Y-axis stick which handles the manual control of 

the front suspension servos 

• Channel 4: Represents the left X-axis stick which handles the turning servo 

• Channel 5: Represents the top left switch which changes between automatic and 

manual control of the suspension servos 

• Channel 8: Represents the top right switch from the left which acts as a Safety 

switch 

The Top left switch allows the user to toggle between manual control of the Pitch and 

roll of the vehicle, while automatic mode lets the control handle the suspension. The 

safety switch disables input to the servos for calibration purposes, in its up position it 

enables the motors while the bottom position disables them. 

 

3.5. Finished RC car 

The finished fully assembled RC car prototype looks as follows: 

 

 

Figure 3.19.: Finished RC car 

The main difference from the previous design is the second level for all the electronic 

hardware, except for the IMU which is directly installed onto the chassis of the car, to 

ensure correct readings from the IMU. The second difference is the weight, with the 
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second level, as well as more electronics, end up raising the weight of the car but the 

suspension system servomotors are more than capable of handling the extra weight, 

testing done with the manual control of the suspension systems shows no noticeable 

difference between pre upgrade performance and now. 
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CHAPTER 4: OBTAINING THE MODELS 

In order to be able to design a control scheme for the active suspension system, the 

transfer functions that link the movement of the RC car with its sensors are needed. 

These movements are the pitch, roll and the height of the vehicle, and as these are 3 

distinct movements, a transfer function will be generated for each, with the end goal of 

controlling each movement separately using a PID regulator for each movement. 

To achieve this, 3 tests will be conducted, one for each movement, that send a PRBS 

(Pseudorandom Binary Sequence) signal to the appropriate servomotors. A PRBS signal 

is chosen as its Fourier harmonics analysis shows that all of its harmonics have the same 

amplitude, therefore the generated model will be compatible for all frequencies 

[JACK71]. 

To generate this PRBS signal we use the MATLAB command idinput as follows: 

 

• 512 stands for the number of samples to be generated 

• ‘prbs’ signals the type of input signal to generate 

• [0 0.02] Is the frequency range the signal will have. This needs to be small, in 

order of servomotor movement be fast enough to react to the changes it will 

face in a real track. 

• [1500 2100] represents the range of values the signal can take; this range is 

chosen to use the full range of motion the suspension motors can give without 

lowering the chassis into the ground 

Once the signal is generated it needs to be looped so that the test can be as long as 

needed, for this the Repeating Signal Star block is used, looping the signal indefinitely 

until the test it done. 

4.1. Model Tests 

The test requires that the car pitches forward and backward, while using the full range 

of motion the suspension servos can give before it collides with the ground. During the 

test, the pitch angle measured by the vehicles IMU will be recorded. 

The following model is the one used for all these tests: 
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Figure 4.1.: Simulink model used to test for the necessary transfer functions 

The Repeating Sequence Star blocks input the generated PRBS signals into the control 

BUS which then gets relayed into the appropriate channels in the main control update 

block, this block also decides which test to run each time, depending on the setup 

configuration, both of these files can be seen in the annex section of this document. 

Once the IMU’s calibration phase is complete, the test can be started from the 

transmitter. As the test is underway the 3 scopes seen in the model record their 

respective movement alongside its angular rate or speed and the input PRBS signal 

generated. 

After the tests the data recorded is then prepared for processing with MATLAB’s system 

identification command 

4.1.1. PITCH TEST AND PLANT CALCULATION 

This test requires the vehicle to pitch forwards and backwards, in order to see the effect 

of the full pitching motion on the pitch angle of the vehicle measure by the installed IMU. 

Using the testing model shown in Figure 4.1. configured for a pitch test, the following 

data was obtained: 
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Figure 4.2.: Pitch test results, calibration time section omitted 

Now the data needs to be prepared before we can calculate the transfer function of the 

plant. This is accomplished with the DATA_PRE_PROCESSING_PITCH.m script, which 

remove the mean value of the data as well as reducing the range of the PRBS signal to 

[-1, 1] in order for it to match the control to be designed for them.  

Once the data is prepared, it is imported into the System Identification toolbox, which 

attempt to estimate the transfer functions of the plant of each movement 

First the data must be imported from the workspace as a time domain signal as shown 

in the following image: 

 

 

Figure 4.3.: Pitch data import 

The script that prepares the data for the toolbox renames the PRBS signal as INPUT and 

the pitch/roll/height measurement as OUTPUT. The data imported can be seen in the 

following image: 
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Figure 4.4.: Prepared Pitch data 

Once successfully imported as time domain data, the data must be then set both as 

Working Data and Validation Data in the toolbox before it can be processed. It is worth 

mentioning that the toolbox can also perform some pre-processing such the range of 

the data if needed. to process the model, select the Estimate --> box and in the following 

dropdown menu selected the option Process Models as seen in the following screenshot: 

 

 

Figure 4.5.: Identification toolbox 

This brings up the Processing Models window, here the number of poles, whether a zero 

is calculated can be selected, as well as initial estimates for each of the transfer 

function’s values. Once set the toolbox will estimate the best fit for the settings and data 

provided. 
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Figure 4.6.: Process models settings and results for pitch 

In the case of the pitch the best match is 87.96% and the fit to the measured data can 

be seen below: 

 

 

Figure 4.7.: Simulated Pitch output vs Measured Pitch output. 

Leaving us with the following transfer function 

𝑇𝐹𝑃𝑖𝑡𝑐ℎ =  
−53.8398(𝑠 + 33.6689)

(𝑠 + 2.3667)(𝑠2 + 25.547 + 471.052)
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4.1.2. ROLL TEST AND PLANT CALCULATION 

This test requires the vehicle to roll form left to right, in order to see the effect of the 

full roll motion on the roll angle of the vehicle measured by the installed IMU. 

This follows the same method as before, using the testing model shown in Figure 4.1. 

configured this time for a roll test, the following data was obtained: 

 

 

Figure 4.8.: Roll test results, calibration time section omitted 

As mention during the pitch test the data needs to be prepared using 

DATA_PRE_PROCESSING_ROLL.m script, which does the same functions as it’s pitch 

counter part only for the roll measured data. The pre-processed data can be seen in the 

next image: 

 

Figure 4.9.: Prepared Roll data 

Following the same method as before, the calculated transfer function for the Roll plant 

is as follows: 
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Figure 4.10.: Process models settings and results for roll 

In the case of the roll the best match is 92.57% and the fit to the measured data can be 

seen below: 

 

 

Figure 4.11.: Simulated Roll output vs Measured Roll output. 

Leaving us with the following transfer function 

𝑇𝐹𝑅𝑜𝑙𝑙 =  
582.092(𝑠 + 39.6181)

(𝑠 + 13.6923)(𝑠2 + 21.6745 + 604.22)
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4.1.2. ROLL TEST AND PLANT CALCULATION 

This test requires the vehicle to raise its chassis up and down, in order to see the effect 

of the full vertical range of the system on the height of the vehicle measured by the 

installed IMU and infrared sensors. 

Once again this follows the same method as before, using the testing model shown in 

Figure 4.1. configured this time for a roll height, the following data was obtained: 

 

 

Figure 4.12.: Height test results, calibration time section omitted 

As mention during the pitch test the data needs to be prepared using 

DATA_PRE_PROCESSING_POS_Z.m script, which does the same functions as it’s pitch 

counterpart only for the height test measured data. The pre-processed data can be seen 

in the next image: 

 

Figure 4.13.: Prepared height data 

Following the same method as before, the calculated transfer function for the height 

plant is as follows: 
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Figure 4.14.: Process models settings and results for height 

Unfortunately, in the case of the height the best match is 39.24% which is not enough 

to represent the plant of the height properly. To get around this, another method of 

estimation can be used, with a least squares  approach [GIOR85] looking like the best 

for this set of data, but there was not enough time to set up the necessary scripts to 

perform this estimation and as such the height transfer function was not calculated and 

consequently the controls for each plant were not made due to a lack of time. 
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CHAPTER 6: CONCLUSIONS 

Even though it was not possible to finish the end goal of this work, that being the 

designing a control scheme to test the active suspension system on the RC car, it was 

possible to successfully finish the other 2 objectives, which are to upgrade the electronic 

hardware without hampering the mechanical active suspension system, and creating a 

Simulink model that allows full functionality of the RC car prototype and allows for 

complex control strategies to be implemented. 

The first of these objectives, is to upgrade the electronic hardware without hampering 

the functionality of the active suspension system, this was successfully implemented 

adding a new floor to the vehicle housing all the new electronics without changing the 

performance of the active suspension system during manual trials. 

The second objective is to prepare a Simulink model allowing access to all the new and 

old functionality of the car, allowing direct telemetry data to be collected from the car 

without needing to stop to access the data from the onboard memory thanks to the 

official Simulink Raspberry Pi support and correct setup of all the components. 

With these 2 objectives, the main motivation to upgrade and setup this vehicle with a 

working active suspension setup for future classes and projects is accomplished. All in 

all, the prototype is ready to test out new control schemes in the control focused classes 

or project in the university, and hopefully it helps create new projects in this ever-

increasing field in the future. 
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CHAPTER 7: FUTURE DEVELOPMENTS 

There are various new avenues of research available to continue from this work, either 

stemming directly from this project as improvements or completely new ones: 

• Finishing the simple control strategy planned for the project 

• The testing of different and more sophisticated control strategies, researching 

their effectiveness on active suspension systems, using this setup. 

• Designing more conventional and complex semi-active/active suspension 

systems such as hydraulics and electromagnetic suspensions and testing them 

using quarter-car setups (only one wheel) 

• Testing the previous points on real vehicles or on half-car models   
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CHAPTER 1: ECONOMIC ANALYSIS 

As it was previously mentioned in the state-of-the-art section of this work, the field of 

active suspension is a one that is in constant growth, as all luxury car brands have or are 

starting their own version of Mercedes-Benz’s Magic body control, and others like 

ClearMotion are exclusively developing their own systems to license to the main car 

manufactures like, Audi, Mercedes Benz, Renault, etc. That’s not counting the 

importance placed into these systems by professional competition teams as the 

difference in handling is night and day. 

This positions this work in a market that is about to boom. Autonomous vehicles are 

becoming each day more of a reality and they will need some type active suspension 

system to stay relevant, as most users will want to focus on other things while the car 

handles the navigation and driving, and unstable rides make that difficult.  

In addition, most automotive manufacturing companies are constantly designing and 

redesigning their systems, as while these systems are effective in stabilizing the vehicle, 

they are also still far too expensive to market to lower end vehicle series: as the cost in 

designing, fabrication, implementation still carry too many costs and that not taking into 

account the price of the necessary high-end sensors for the system that normally require 

expensive maintenance. 

Therefore, this field is one that in the future is going to need more experienced and 

trained engineers that can effectively design new strategies and find viable ways to 

implement them, something that the Comillas Pontifical University can support with 

more projects like this one, creating a new avenue for employment in multinational 

enterprises. 
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CHAPTER 1:  CONFIG_RC_CAR.M 

This code sets up everything needed for the model to function, it loads all the necessary 

data and configuration files to run all the peripherals  

clc 

clear 

format short e 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% GENERAL PARAMETERS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% Sampling time (s) 

SAMPLING_TIME = 10e-3; 

fprintf('SAMPLING_TIME (s) = %g s\n',SAMPLING_TIME); 

% Gravity in Madrid (m/s^2) 

GRAVITY = 9.80208; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% SENSORS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%

%%%%% 

% SENSOR UPDATE PERIOD (samples): [ Frequency Slot] 

% Update frequency in samples. If frequency = 0, sensor is not 

activated 

SENSOR_FREQ = [ 

    % ACCELEROMETER XYZ -> 1 

    1 0 

    % IR DISTANCE Z AXIS -> 2 

    1 0 

     

    ]; 

% ************** IMU CONFIGURATION **************** 

run('../HARDWARE_COMPONENTS/CONFIG_MPU6000') 

% ************** MAGNETOMETER CONFIGURATION **************** 

run('../HARDWARE_COMPONENTS/CONFIG_NO_MAGNETOMETER') 

% ************** GPS CONFIGURATION **************** 

run('../HARDWARE_COMPONENTS/CONFIG_M8NUBLOX') 

% ************** BAROMETER CONFIGURATION **************** 

run('../HARDWARE_COMPONENTS/CONFIG_MS5611') 

% ************** BATTERY MANAGEMENT SYSTEM **************** 

run('../HARDWARE_COMPONENTS/CONFIG_BMS') 

% ************** ADC MCP3428 SETUP ************* 

run('../HARDWARE_COMPONENTS/CONFIG_MCP3428') 

% ************** COUNTER LS7366R SETUP ************* 

run('../HARDWARE_COMPONENTS/CONFIG_LS7366R') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% RC RECEIVER 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
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% ************** RC RECIEVER CONFIGURATION **************** 

run('../HARDWARE_COMPONENTS/CONFIG_RCRX_IBUS') 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% ACTUATORS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% ******** BLDC CONFIGURATION ******** 

run('../HARDWARE_COMPONENTS/CONFIG_BLDC') 

run('../HARDWARE_COMPONENTS/CONFIG_PCA9685') 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% MODEL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

run('../SOFTWARE_COMPONENTS/MODEL/CONFIG_MODEL') 

MODEL_INI.PARAM.SENSOR_FREQ = SENSOR_FREQ; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% EKF 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

cd '../SOFTWARE_COMPONENTS/EKF' 

EKF_INI = CONFIG_EKF(MODEL_INI); 

SENSOR_ACT = boolean([ ... 

    (SENSOR_FREQ(1,1)>0)*ones(3,1) % ACCEL XYZ 

    (SENSOR_FREQ(2,1)>0) %DIST_Z    

]);     

EKF_INI.SENSOR_ACT = SENSOR_ACT; 

clear SENSOR_ACT  

cd ../../CONFIGURATION 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% CONTROL 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

cd '../SOFTWARE_COMPONENTS/CONTROL' 

CONTROL_INI = CONFIG_CONTROL(MODEL_INI); 

CONTROL_INI.EKF = EKF_INI; 

CONTROL_INI.INPUT.IMU = IMU_INI; 

CONTROL_INI.INPUT.RCRX = RCRX_INI; 

CONTROL_INI.INPUT.ADC = ADC_INI; 

CONTROL_INI.INPUT.ENCODER = ENCODER_INI; 

CONTROL_INI.OUTPUT.BLDC = BLDC_INI; 

CONTROL_INI.PARAM.SENSOR_FREQ = single(SENSOR_FREQ); 

%PRBS 

TEST_PITCH_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]); 

TEST_ROLL_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]); 

TEST_POSZ_PRBS = idinput(512, 'prbs', [0 0.02], [1500 2100]); 

cd ../../CONFIGURATION 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% MAVLINK 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 
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% UART transfer rate (bits/s) 

MAVLINK_TRANSFER_RATE = 57600; % UART 

fprintf('MAVLINK TRANSFER RATE = %d bits/s\n',MAVLINK_TRANSFER_RATE); 

% MAVLINK sampling time 

% MAVLINK_SAMPLING_TIME = 2*SAMPLING_TIME; 

MAVLINK_SAMPLING_TIME = SAMPLING_TIME; 

fprintf('MAVLINK SAMPLING TIME = %g s\n',MAVLINK_SAMPLING_TIME); 

% MAVLINK buffer size 

MAVLINK_BUFFER_SIZE = 50; 

cd ../SOFTWARE_COMPONENTS/MAVLINK 

fprintf('MAVLINK BUFFER SIZE = %d bytes\n',MAVLINK_BUFFER_SIZE); 

% SYSTEM MAVLINK configuration 

PARAM_LIST_LEN = 1; 

disp('MAVLINK FOR CONTROL SYSTEM:') 

MAVLINK_SYS_INI = CONFIG_MAVLINK(MAVLINK_BUFFER_SIZE,[0 30 

26],1,0,MAVLINK_SAMPLING_TIME,PARAM_LIST_LEN); 

% PC MAVLINK configuration 

disp('MAVLINK FOR PC CONTROL STATION:') 

MAVLINK_PC_INI = CONFIG_MAVLINK(MAVLINK_BUFFER_SIZE,[0 

191],0,0,MAVLINK_SAMPLING_TIME,PARAM_LIST_LEN); 

cd ../../CONFIGURATION 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% BUS DEFINITIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% --------------------------------------------------------------------

----- 

cd '../BUS_DEFINITIONS' 

BusDefinition(MODEL_INI,'MODEL_Bus') 

BusDefinition(EKF_INI,'EKF_Bus') 

BusDefinition(CONTROL_INI,'CONTROL_Bus') 

BusDefinition(MAVLINK_SYS_INI,'MAVLINK_Bus') 

% --------------------------------------------------------------------

----- 

cd ../CONFIGURATION 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%% SIMULINK MODEL CONFIGURATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

cd('../SIMULINK'); 

MODEL_SLX = 'RASPI_CONTROL_SYSTEM'; 

open(MODEL_SLX) 

% RUN_MODE DEFINITION 

% / 0. REAL-TIME SIMULATION / 1. CONTROL VALIDATION / 2. IMPLEMETATION   

RUN_MODE = 2; 

switch RUN_MODE 

    case 0 % REAL-TIME SIMULATION 

        

set_param(MODEL_SLX,'FixedStep','MODEL_INI.PARAM.SIM_SAMPLING_TIME'); 

        set_param(MODEL_SLX,'StopTime','inf'); 

        set_param([MODEL_SLX '/HARDWARE'],'Commented','on'); 

        set_param([MODEL_SLX '/SIMULATION'],'Commented','off'); 

        set_param([MODEL_SLX '/Microseconds at 

Start'],'Commented','on'); 

        set_param([MODEL_SLX '/Microseconds at 

End'],'Commented','on'); 

        set_param([MODEL_SLX '/COMPUTATIONAL LOAD'],'Commented','on'); 
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        set_param([MODEL_SLX '/MONITORIZATION/BLACK 

BOX'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE: 

SCOPES'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES'],'Commented','off'); 

        set_param([MODEL_SLX 

'/MONITORIZATION/MAVLINK'],'Commented','on'); 

        set_param([MODEL_SLX '/SIMULATION/Simulation 

Pace'],'Commented','off'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF 1'],'Commented','through'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF 2'],'Commented','through'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF 3'],'Commented','through'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF 4'],'Commented','through'); 

        set_param(MODEL_SLX,'SimulationMode','Normal'); 

        CONTROL_INI.STATE.CURRENT_STATUS = uint8(0); 

        CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(0); 

        % Closed-loop transfer-function filter activation 

        for nn = 1:12 

            set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF ' num2str(nn)],'Commented','through'); 

        end 

    case 1 % FAST SIMULATION 

        

set_param(MODEL_SLX,'FixedStep','MODEL_INI.PARAM.SIM_SAMPLING_TIME'); 

        

set_param(MODEL_SLX,'StopTime',num2str(MODEL_INI.PARAM.SIM_FINAL_TIME)

); 

        set_param([MODEL_SLX '/HARDWARE'],'Commented','on'); 

        set_param([MODEL_SLX '/SIMULATION'],'Commented','off'); 

        set_param([MODEL_SLX '/SIMULATION/Simulation 

Pace'],'Commented','on'); 

        set_param([MODEL_SLX '/Microseconds at 

Start'],'Commented','on'); 

        set_param([MODEL_SLX '/Microseconds at 

End'],'Commented','on'); 

        set_param([MODEL_SLX '/COMPUTATIONAL LOAD'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/BLACK 

BOX'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE: 

SCOPES'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES'],'Commented','off'); 

        set_param(MODEL_SLX,'SimulationMode','Normal'); 

        % Closed-loop transfer-function filter activation 

        for nn = 1:12 

            set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES/Second-order LPF ' num2str(nn)],'Commented','through'); 

        end 

        %*************** EKF TUNING **************** 

        % FLIGHT 

        CONTROL_INI.STATE.CURRENT_STATUS = uint8(8); 

        CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(8); 

        %******************************************* 

    case 2 % IMPLEMENTATION 

        try 

            clear rpi 
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            rpi = raspberrypi; 

            rpi.stopModel(MODEL_SLX); 

            aux = pwd; 

            rpi.system(['rm -rf \MATLAB_ws/R2018b/' aux(1)]) 

        catch 

        end 

        set_param(MODEL_SLX,'FixedStep','IMU_INI.SAMPLING_TIME'); 

        set_param(MODEL_SLX,'StopTime','inf'); 

        set_param([MODEL_SLX '/HARDWARE'],'Commented','off'); 

        set_param([MODEL_SLX '/SIMULATION'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION'],'Commented','off'); 

        set_param([MODEL_SLX '/Microseconds at 

Start'],'Commented','on');  % CHANGED FOR THROTTLE TESTING SHOULD BE 

'off' 

        set_param([MODEL_SLX '/Microseconds at 

End'],'Commented','on');    % CHANGED FOR THROTTLE TESTING SHOULD BE 

'off' 

        set_param([MODEL_SLX '/COMPUTATIONAL 

LOAD'],'Commented','on');     % CHANGED FOR THROTTLE TESTING SHOULD BE 

'off' 

        set_param([MODEL_SLX '/MONITORIZATION/BLACK 

BOX'],'Commented','on'); 

        set_param([MODEL_SLX '/MONITORIZATION/EXTERNAL MODE: 

SCOPES'],'Commented','off'); 

        set_param([MODEL_SLX '/MONITORIZATION/SIMULATION: 

SCOPES'],'Commented','on'); 

        set_param([MODEL_SLX 

'/MONITORIZATION/MAVLINK'],'Commented','on'); 

        set_param(MODEL_SLX,'SimulationMode','External'); 

        % set_param([MODEL_SLX '/Target Setup'],'Commented','off'); 

        % SYSTEM STATUS: ANGLE CONTROL 

        CONTROL_INI.STATE.CURRENT_STATUS = uint8(0); 

        CONTROL_INI.STATE.PREVIOUS_STATUS = uint8(0); 

    otherwise 

end 

  

clear RUN_MODE MODEL_SLX 

clear MAVLINK_TRANSFER_RATE MAVLINK_BUFFER_SIZE PARAM_LIST_LEN  

clear EKF_INPUT_SIZE EKF_STATE_SIZE EKF_OUTPUT_SIZE 
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CHAPTER 2: CONFIG_MCP3428.M 

This is the initialization code for the ADC3 Click board, which loads all the necessary 

addresses and variables needed for the model to function.  

%% CONFIGURATION FILE FOR THE MCP3428 ANALOGUE TO DIGITAL CONVERTER 
% Slave address for ADC converter MCP3428 
MCP3428.ADDRESS = bin2dec('01101000'); 
MCP3428.ADDRESS_WRITE = hex2dec('D0'); 
MCP3428.ADDRESS_READ = hex2dec('D1'); 

  
% Configuration register for CH1, OSM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_100 = bin2dec('10000000'); 
% Configuration register for CH2, OSM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_200 = bin2dec('10100000'); 
% Configuration register for CH3, OSM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_300 = bin2dec('11000000'); 
% Configuration register for CH4, OSM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_400 = bin2dec('11100000'); 
% Configuration register for CH1, OSM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_101 = bin2dec('10000100'); 
% Configuration register for CH2, OSM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_201 = bin2dec('10100100'); 
% Configuration register for CH3, OSM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_301 = bin2dec('11000100'); 
% Configuration register for CH4, OSM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_401 = bin2dec('11100100'); 
% Configuration register for CH1, CCM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_110 = bin2dec('10010000'); 
% Configuration register for CH2, CCM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_210 = bin2dec('10110000'); 
% Configuration register for CH3, CCM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_310 = bin2dec('11010000'); 
% Configuration register for CH4, CCM, 240 SPS, PGA=1 (12 bits) 
MCP3428.CONFIG_REG_410 = bin2dec('11110000'); 
% Configuration register for CH1, CCM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_111 = bin2dec('10010100'); 
% Configuration register for CH2, CCM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_211 = bin2dec('10110100'); 
% Configuration register for CH3, CCM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_311 = bin2dec('11010100'); 
% Configuration register for CH2, CCM, 60 SPS, PGA=1 (14 bits) 
MCP3428.CONFIG_REG_411 = bin2dec('11110100'); 

  
%% General parameters 
% Reference voltage 
MCP3428.VREF = single(2.048); % V 
% Samples per second 
MCP3428.SPS = uint8(240); % Hz 
% Number of bits 
MCP3428.NBITS = uint8(12);  
% Conversion mode 
% / 0: Continuous conversion / 1: One-shot conversion 
MCP3428.MODE = boolean(1);  
% Configuration bytes for each channel 
MCP3428.CFG = [MCP3428.CONFIG_REG_100 MCP3428.CONFIG_REG_200 ... 
               MCP3428.CONFIG_REG_300 MCP3428.CONFIG_REG_400]'; 
% Programmable gain amplifier for each channel            
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MCP3428.PGA = uint8([1 1 1 1]'); 
% Total number of channels converted 
MCP3428.NUM_CH = 4;  

  
%% INI Setup 
ADC_INI.CHANNEL1 = 0; 
ADC_INI.CHANNEL2 = 0; 
ADC_INI.CHANNEL3 = 0; 
ADC_INI.CHANNEL4 = 0; 
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CHAPTER 3: CONFIG_LS7366R.M 

This is the initialization code for the Counter Click board, which loads all the necessary 

addresses and variables needed for the model to function.  

 

%% CONFIGURATION FILE FOR THE LS7366R 32-BIT QUADRATURE COUNTER 
LS7366R.SAMPLING_TIME = 1e-03; 
%---------------------------------------------------------------------

----- 
% IR Codes/ADDRESSES 
LS7366R.WR_MDR0_ADDRESS = uint8(bin2dec('10001000')); 
LS7366R.WR_MDR1_ADDRESS = uint8(bin2dec('10010000')); 
LS7366R.RD_MDR0_ADDRESS = uint8(bin2dec('01001000')); 
LS7366R.RD_MDR1_ADDRESS = uint8(bin2dec('01010000')); 
LS7366R.RD_CNTR_ADDRESS = uint8(bin2dec('01100000')); 
LS7366R.RD_STR_ADDRESS = uint8(bin2dec('01110000')); 
LS7366R.CLR_CNTR_ADDRESS = uint8(bin2dec('00100000')); 
%---------------------------------------------------------------------

----- 
% CONFIG BYTES 
% FILTER CLOCK DIV=1, INDEX DISABLED, FREE-RUNNING MODE, X1 QUDRATURE 

MODE 
LS7366R.CONFIG_MDR0_BYTE = uint8(bin2dec('01000001')); 
% NO FLAGS, COUNTING ENABLED, 2-BYTE MODE 
LS7366R.CONFIG_MDR1_BYTE = uint8(bin2dec('00000010')); 
%CLEAR COUNTER DUMMY BYTE 
LS7366R.CLEAR_CNTR_BYTE = uint8(0); 
%---------------------------------------------------------------------

----- 
% INI 
ENCODER_INI.SPEED = single(0); 
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CHAPTER 4: CONTROL UPDATE 

FUNCTION 

This is the code for the control update function that handles the different controls 

strategies and necessary code for their correct operation. 

function CONTROL_OUT = CONTROL_UPDATE(CONTROL_IN) 

  
%% COPY CONTROL BUS 
CONTROL_OUT = CONTROL_IN; 

  
%% CONTROL_MODE 
% / 0. INITIALIZATION           / 1. ESTIMATION             / 2. 

SETTING OPERATION POINT  
% / 3. TESTING VELOCITY CONTORL / 4. VELOCITY CONTROL ONLY  / 5. FULL 

CONTROL 
% / 6. MODEL TESTING 
CONTROL_MODE = CONTROL_OUT.STATE.CONTROL_MODE; 
TESTING_MODE = CONTROL_OUT.STATE.TESTING_MODE; 
if CONTROL_MODE == 0 % INITIALIZATION 
    return 
else 
   CONTROL_OUT.EKF.EKF_MODE = CONTROL_OUT.STATE.EKF_MODE; 
end     

  
%% READ MEASUREMENTS 
GYRO = CONTROL_OUT.INPUT.IMU.GYRO; % rad/s 
ACCEL = CONTROL_OUT.INPUT.IMU.ACCEL; % m/s^2 
GYRO_MEAN = CONTROL_OUT.INPUT.IMU.GYRO_MEAN; % rad/s 
ACCEL_MEAN = CONTROL_OUT.INPUT.IMU.ACCEL_MEAN; % m/s^2 
DIST_Z = CONTROL_OUT.INPUT.DIST_Z; 
RAW_CH = CONTROL_OUT.INPUT.RCRX.RAW_CH; 
SPEED  = CONTROL_OUT.INPUT.ENCODER.SPEED; 

  
%% EKF UPDATE 
% EKF INPUT = [GYRO_MEAN ; ACCEL_MEAN ; GYRO_BIAS_INPUT ; 

ACCEL_BIAS_INPUT]' 
CONTROL_OUT.EKF.INPUT = [GYRO_MEAN ; ACCEL_MEAN ; 

zeros(6,1,'single')]; 
% EKF OUTPUT 
CONTROL_OUT.EKF.OUTPUT = [ACCEL ; DIST_Z]; 
% EKF UPDATE 
CONTROL_OUT.EKF = EKF(CONTROL_OUT.EKF);                       
% STATE UPDATE                       
EULER_ANG = CONTROL_OUT.EKF.STATE(1:3); % rad 
GYRO_BIAS = CONTROL_OUT.EKF.STATE(4:6); % rad/s 
EARTH_VEL_Z = CONTROL_OUT.EKF.STATE(7); % m/s 
EARTH_POS_Z = CONTROL_OUT.EKF.STATE(8); % m 
ACCEL_BIAS = CONTROL_OUT.EKF.STATE(9:11); % m 
CONTROL_OUT.INPUT.EARTH_POS_Z = EARTH_POS_Z; 
CONTROL_OUT.INPUT.EARTH_VEL_Z = EARTH_VEL_Z; 
GRAVITY = CONTROL_OUT.PARAM.GRAVITY; 
CONTROL_OUT.INPUT.EARTH_ACCEL_Z = ... 
    single([0,0,1]*(CONTROL_OUT.EKF.PARAM.matDCM_BE*([1 1 -

1]'.*(ACCEL-ACCEL_BIAS)) + [0 0 GRAVITY].')); 



-61- 

CONTROL_OUT.INPUT.EULER_ANG = EULER_ANG; 
BODY_RATE = GYRO - GYRO_BIAS; 
EULER_RATE = ... 
    CONTROL_OUT.EKF.PARAM.matRATE_BE*BODY_RATE; 
CONTROL_OUT.INPUT.EULER_RATE = EULER_RATE; 
if CONTROL_MODE == 1 % ESTIMATION 
    return 
end     

  
%% INITIALIZE OUTPUTS 
ESC_PWM = 1500*ones(10,1,'single'); 
% CONTROL PASS THROUGH FOR INPUTS 
ESC_PWM(3) = RAW_CH(3); %STEERING 

  
%% CONTROL PARAMETERS 
% GENERAL PARAMETERS 
SAMPLING_TIME = CONTROL_OUT.PARAM.SAMPLING_TIME; 
%CONTROL OUTPUT VALUE 
PITCH_CONTROL = CONTROL_OUT.OUTPUT.PITCH_CONTROL; 
ROLL_CONTROL = CONTROL_OUT.OUTPUT.ROLL_CONTROL; 
POS_Z_CONTROL = CONTROL_OUT.OUTPUT.POS_Z_CONTROL; 

  
%% CONTROL STATE 
persistent initialize PIT_INT_STATE PIT_DER_STATE ROLL_INT_STATE 

ROLL_DER_STATE ... 
                      POS_Z_INT_STATE POS_Z_DER_STATE VEL_INT_STATE 

VEL_DER_STATE 
if isempty(initialize) 
    PIT_INT_STATE = single(0); 
    PIT_DER_STATE = single(0); 
    ROLL_INT_STATE = single(0); 
    ROLL_DER_STATE = single(0); 
    POS_Z_INT_STATE = single(0); 
    POS_Z_DER_STATE = single(0); 
    VEL_INT_STATE = single(0); 
    VEL_DER_STATE = single(0); 
    initialize = 1; 
end 
%% SET OPERATION HEIGHT 
switch CONTROL_MODE 
    case {2,5} 
        ESC_PWM(4) = 1800; 
        ESC_PWM(5) = 1800; 
        ESC_PWM(6) = 1800; 
        ESC_PWM(7) = 1800; 
    otherwise 
end 

  
%% START OF CONTROL STRATEGY REGION 
%%  VELOCITY XYZ: PID CONTROLLER 
switch CONTROL_MODE 
    case 2 
    case 3 % Square Wave testing 
        % INPUTS 
        CTRL_INPUT.TARGET =  

single((single(CONTROL_OUT.INPUT.TESTING_STEP)-1500)*(1.4e-

3)); %THROTTLE TARGET %single((CONTROL_OUT.INPUT.TESTING_STEP-

1500)*(1.4e-3)); 
        CTRL_INPUT.MEASUREMENT = single(SPEED); 
        CTRL_INPUT.DERIVATIVE = single(0); 
        CTRL_INPUT.INT_STATE = VEL_INT_STATE; 
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        CTRL_INPUT.DER_STATE = VEL_DER_STATE; 
        % PARAMETERS 
        CTRL_PARAM.Ts = SAMPLING_TIME; 
        CTRL_PARAM.K = CONTROL_OUT.PARAM.VEL_K; 
        CTRL_PARAM.Ti = CONTROL_OUT.PARAM.VEL_Ti; 
        CTRL_PARAM.Td = CONTROL_OUT.PARAM.VEL_Td; 
        CTRL_PARAM.b = CONTROL_OUT.PARAM.VEL_b; 
        CTRL_PARAM.N = CONTROL_OUT.PARAM.VEL_N; 
        CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.VEL_MAX_CONTROL; 
        CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.VEL_MIN_CONTROL; 
        CTRL_PARAM.INT_DISC_TYPE = 

CONTROL_OUT.PARAM.VEL_INT_DISC_TYPE; 
        CTRL_PARAM.DER_DISC_TYPE = 

CONTROL_OUT.PARAM.VEL_DER_DISC_TYPE; 
        CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.VEL_DER_INPUT; 
        CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.VEL_ANTIWINDUP; 
        % PID CONTROL 
        CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM); 
        % OUTPUT: ACCELERATION TARGET 
        ESC_PWM(2) = single(((CTRL_OUTPUT.CONTROL)*(1/(1.4e-

3)))+1500); 
        % STATE 
        VEL_INT_STATE = CTRL_OUTPUT.INT_STATE; 
        VEL_DER_STATE = CTRL_OUTPUT.DER_STATE; 

         
    case {4,5} % VELOCITY CONTROL 
        % INPUTS 
        CTRL_INPUT.TARGET =  single((single(RAW_CH(2))-1500)*(1.4e-

3)); %THROTTLE TARGET %single((CONTROL_OUT.INPUT.TESTING_STEP-

1500)*(1.4e-3)); 
        CTRL_INPUT.MEASUREMENT = single(SPEED); 
        CTRL_INPUT.DERIVATIVE = single(0); 
        CTRL_INPUT.INT_STATE = VEL_INT_STATE; 
        CTRL_INPUT.DER_STATE = VEL_DER_STATE; 
        % PARAMETERS 
        CTRL_PARAM.Ts = SAMPLING_TIME; 
        CTRL_PARAM.K = CONTROL_OUT.PARAM.VEL_K; 
        CTRL_PARAM.Ti = CONTROL_OUT.PARAM.VEL_Ti; 
        CTRL_PARAM.Td = CONTROL_OUT.PARAM.VEL_Td; 
        CTRL_PARAM.b = CONTROL_OUT.PARAM.VEL_b; 
        CTRL_PARAM.N = CONTROL_OUT.PARAM.VEL_N; 
        CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.VEL_MAX_CONTROL; 
        CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.VEL_MIN_CONTROL; 
        CTRL_PARAM.INT_DISC_TYPE = 

CONTROL_OUT.PARAM.VEL_INT_DISC_TYPE; 
        CTRL_PARAM.DER_DISC_TYPE = 

CONTROL_OUT.PARAM.VEL_DER_DISC_TYPE; 
        CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.VEL_DER_INPUT; 
        CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.VEL_ANTIWINDUP; 
        % PID CONTROL 
        CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM); 
        % OUTPUT: ACCELERATION TARGET 
        ESC_PWM(2) = single(((CTRL_OUTPUT.CONTROL)*(1/(1.4e-

3)))+1500); 
        % STATE 
        VEL_INT_STATE = CTRL_OUTPUT.INT_STATE; 
        VEL_DER_STATE = CTRL_OUTPUT.DER_STATE; 
    case 6 % PITCH TESTING 
        switch TESTING_MODE 
            case 0 
            case 1 
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                if(RAW_CH(7) == 1000) 
                    %SERVO 1 
                    ESC_PWM(4) = (1500+300); 
                    %SERVO 2 
                    ESC_PWM(5) = (1500+300); 
                    %SERVO 3 
                    ESC_PWM(6) = (1800-((1500+300)-1800)); 
                    %SERVO 4 
                    ESC_PWM(7) = (1800-((1500+300)-1800)); 
                elseif(RAW_CH(7) == 1500) 
                    %SERVO 1 
                    ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_PITCH_PRBS; 
                    %SERVO 2 
                    ESC_PWM(5) = CONTROL_OUT.INPUT.TESTING_PITCH_PRBS; 
                    %SERVO 3 
                    ESC_PWM(6) = (1800-

(CONTROL_OUT.INPUT.TESTING_PITCH_PRBS-1800)); 
                    %SERVO 4 
                    ESC_PWM(7) = (1800-

(CONTROL_OUT.INPUT.TESTING_PITCH_PRBS-1800)); 
                end 
            case 2 
                if(RAW_CH(7) == 1000) 
                    %SERVO 1 
                    ESC_PWM(4) = (1500+300); 
                    %SERVO 2 
                    ESC_PWM(5) = (1800-((1500+300)-1800)); 
                    %SERVO 3 
                    ESC_PWM(6) = (1800-((1500+300)-1800)); 
                    %SERVO 4 
                    ESC_PWM(7) = (1500+300); 
                elseif(RAW_CH(7) == 1500) 
                    %SERVO 1 
                    ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_ROLL_PRBS; 
                    %SERVO 2 
                    ESC_PWM(5) = (1800-

(CONTROL_OUT.INPUT.TESTING_ROLL_PRBS-1800)); 
                    %SERVO 3 
                    ESC_PWM(6) = (1800-

(CONTROL_OUT.INPUT.TESTING_ROLL_PRBS-1800)); 
                    %SERVO 4 
                    ESC_PWM(7) = CONTROL_OUT.INPUT.TESTING_ROLL_PRBS; 
                end 
            case 3 
                if(RAW_CH(7) == 1000) 
                    %SERVO 1 
                    ESC_PWM(4) = (1500+300); 
                    %SERVO 2 
                    ESC_PWM(5) = (1500+300); 
                    %SERVO 3 
                    ESC_PWM(6) = (1500+300); 
                    %SERVO 4 
                    ESC_PWM(7) = (1500+300); 
                elseif(RAW_CH(7) == 1500) 
                    %SERVO 1 
                    ESC_PWM(4) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS; 
                    %SERVO 2 
                    ESC_PWM(5) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS; 
                    %SERVO 3 
                    ESC_PWM(6) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS; 
                    %SERVO 4 



-64- 

                    ESC_PWM(7) = CONTROL_OUT.INPUT.TESTING_POSZ_PRBS; 
                end 
            otherwise 
        end 
    otherwise 
end 

  
%%  PITCH CONTROL: PID CONTROLLER 
switch CONTROL_MODE 
    case 5 % Standard work. 
        % INPUTS 
        CTRL_INPUT.TARGET =  single(51.5); 
        CTRL_INPUT.MEASUREMENT = single(EULER_ANG(2)); 
        CTRL_INPUT.DERIVATIVE = single(EULER_RATE(2)); 
        CTRL_INPUT.INT_STATE = PIT_INT_STATE; 
        CTRL_INPUT.DER_STATE = PIT_DER_STATE; 
        % PARAMETERS 
        CTRL_PARAM.Ts = SAMPLING_TIME; 
        CTRL_PARAM.K = CONTROL_OUT.PARAM.PIT_K; 
        CTRL_PARAM.Ti = CONTROL_OUT.PARAM.PIT_Ti; 
        CTRL_PARAM.Td = CONTROL_OUT.PARAM.PIT_Td; 
        CTRL_PARAM.b = CONTROL_OUT.PARAM.PIT_b; 
        CTRL_PARAM.N = CONTROL_OUT.PARAM.PIT_N; 
        CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.PIT_MAX_CONTROL; 
        CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.PIT_MIN_CONTROL; 
        CTRL_PARAM.INT_DISC_TYPE = 

CONTROL_OUT.PARAM.PIT_INT_DISC_TYPE; 
        CTRL_PARAM.DER_DISC_TYPE = 

CONTROL_OUT.PARAM.PIT_DER_DISC_TYPE; 
        CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.PIT_DER_INPUT; 
        CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.PIT_ANTIWINDUP; 
        % PID CONTROL 
        CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM); 
        % OUTPUT: ACCELERATION TARGET 
        PITCH_CONTROL = -CTRL_OUTPUT.CONTROL; %Mando invertido para 

encajar con modelo (la k es negativa) 

  
        % STATE 
        PIT_INT_STATE = CTRL_OUTPUT.INT_STATE; 
        PIT_DER_STATE = CTRL_OUTPUT.DER_STATE; 
    otherwise 
end 
 %%  ROLL CONTROL: PID CONTROLLER 
switch CONTROL_MODE 
    case 5 % Normal operation 
        % INPUTS 
        CTRL_INPUT.TARGET =  single(0); 
        CTRL_INPUT.MEASUREMENT = single(EULER_ANG(1)); 
        CTRL_INPUT.DERIVATIVE = single(EULER_RATE(1)); 
        CTRL_INPUT.INT_STATE = ROLL_INT_STATE; 
        CTRL_INPUT.DER_STATE = ROLL_DER_STATE; 
        % PARAMETERS 
        CTRL_PARAM.Ts = SAMPLING_TIME; 
        CTRL_PARAM.K = CONTROL_OUT.PARAM.ROLL_K; 
        CTRL_PARAM.Ti = CONTROL_OUT.PARAM.ROLL_Ti; 
        CTRL_PARAM.Td = CONTROL_OUT.PARAM.ROLL_Td; 
        CTRL_PARAM.b = CONTROL_OUT.PARAM.ROLL_b; 
        CTRL_PARAM.N = CONTROL_OUT.PARAM.ROLL_N; 
        CTRL_PARAM.MAX_CONTROL = CONTROL_OUT.PARAM.ROLL_MAX_CONTROL; 
        CTRL_PARAM.MIN_CONTROL = CONTROL_OUT.PARAM.ROLL_MIN_CONTROL; 
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        CTRL_PARAM.INT_DISC_TYPE = 

CONTROL_OUT.PARAM.ROLL_INT_DISC_TYPE; 
        CTRL_PARAM.DER_DISC_TYPE = 

CONTROL_OUT.PARAM.ROLL_DER_DISC_TYPE; 
        CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.ROLL_DER_INPUT; 
        CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.ROLL_ANTIWINDUP; 
        % PID CONTROL 
        CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM); 
        % OUTPUT: ACCELERATION TARGET 
        ROLL_CONTROL = CTRL_OUTPUT.CONTROL; 
        % STATE 
        ROLL_INT_STATE = CTRL_OUTPUT.INT_STATE; 
        ROLL_DER_STATE = CTRL_OUTPUT.DER_STATE; 
    otherwise 
end 

  
 %%  POS_Z CONTROL: PID CONTROLLER 
% switch CONTROL_MODE 
%     case 5 % Normal operation 
%         % INPUTS 
%         CTRL_INPUT.TARGET =  single() 
%         CTRL_INPUT.MEASUREMENT = single(EARTH_POS_Z) 
%         CTRL_INPUT.DERIVATIVE = single(EARTH_VEL_Z) 
%         CTRL_INPUT.INT_STATE = POS_Z_INT_STATE; 
%         CTRL_INPUT.DER_STATE = POS_Z_DER_STATE; 
%         % PARAMETERS 
%         CTRL_PARAM.Ts = SAMPLING_TIME; 
%         CTRL_PARAM.K = CONTROL_OUT.PARAM.POS_Z_K; 
%         CTRL_PARAM.Ti = CONTROL_OUT.PARAM.POS_Z_Ti; 
%         CTRL_PARAM.Td = CONTROL_OUT.PARAM.POS_Z_Td; 
%         CTRL_PARAM.b = CONTROL_OUT.PARAM.POS_Z_b; 
%         CTRL_PARAM.N = CONTROL_OUT.PARAM.POS_Z_N; 
%         CTRL_PARAM.MAX_CONTROL = 

CONTROL_OUT.PARAM.POS_Z_MAX_CONTROL; 
%         CTRL_PARAM.MIN_CONTROL = 

CONTROL_OUT.PARAM.POS_Z_MIN_CONTROL; 
%         CTRL_PARAM.INT_DISC_TYPE = 

CONTROL_OUT.PARAM.POS_Z_INT_DISC_TYPE; 
%         CTRL_PARAM.DER_DISC_TYPE = 

CONTROL_OUT.PARAM.POS_Z_DER_DISC_TYPE; 
%         CTRL_PARAM.DER_INPUT = CONTROL_OUT.PARAM.POS_Z_DER_INPUT; 
%         CTRL_PARAM.ANTIWINDUP = CONTROL_OUT.PARAM.POS_Z_ANTIWINDUP; 
%         % PID CONTROL 
%         CTRL_OUTPUT = PID(CTRL_INPUT,CTRL_PARAM); 
%         % OUTPUT: ACCELERATION TARGET 
%         POS_Z_CONTROL = CTRL_OUTPUT.CONTROL; 
%         % STATE 
%         POS_Z_INT_STATE = CTRL_OUTPUT.INT_STATE; 
%         POS_Z_DER_STATE = CTRL_OUTPUT.DER_STATE; 
%     otherwise 
% end 

  
%% CONTROL MIXER 

  
if (RAW_CH(5)>1500) 
    %SERVO 1 
    ESC_PWM(4) = 

((PITCH_CONTROL+ROLL_CONTROL+POS_Z_CONTROL)*250)+1800; 
    %SERVO 2 
    ESC_PWM(5) = ((PITCH_CONTROL-

ROLL_CONTROL+POS_Z_CONTROL)*250)+1800; 
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    %SERVO 3 
    ESC_PWM(6) = ((-PITCH_CONTROL-

ROLL_CONTROL+POS_Z_CONTROL)*250)+1800; 
    %SERVO 4 
    ESC_PWM(7) = ((-

PITCH_CONTROL+ROLL_CONTROL+POS_Z_CONTROL)*250)+1800; 
else 
    %SERVO 1 
    ESC_PWM(4) = (((single(RAW_CH(4))-1500)+(single(RAW_CH(1))-

1500))*(250/600))+1800; 
    %SERVO 2 
    ESC_PWM(5) = (((single(RAW_CH(4))-1500)-(single(RAW_CH(1))-

1500))*(250/600))+1800; 
    %SERVO 3 
    ESC_PWM(6) = ((-(single(RAW_CH(4))-1500)-(single(RAW_CH(1))-

1500))*(250/600))+1800; 
    %SERVO 4 
    ESC_PWM(7) = ((-(single(RAW_CH(4))-1500)+(single(RAW_CH(1))-

1500))*(250/600))+1800; 
end 
%% CONTROL BUS UPDATE 
% TARGET 
% CONTROL_OUT.INPUT.EARTH_POS_TARGET = EARTH_POS_TARGET; 
% CONTROL_OUT.INPUT.EARTH_VEL_TARGET = EARTH_VEL_TARGET; 
% CONTROL_OUT.INPUT.EARTH_ACCEL_TARGET = EARTH_ACCEL_TARGET; 
% CONTROL_OUT.INPUT.EULER_ANG_TARGET = EULER_ANG_TARGET; 
% CONTROL_OUT.INPUT.EULER_RATE_TARGET = EULER_RATE_TARGET; 
% CONTROL_OUT.INPUT.EULER_ACCEL_TARGET = EULER_ACCEL_TARGET; 
% CONTROL_OUT.OUTPUT.BLDC.THRUST_FORCES = THRUST_FORCES; 
% CONTROL_OUT.INPUT.THROTTLE_TARGET = THR_TARGET; 

  
% CONTROL VARIABLES 
CONTROL_OUT.OUTPUT.BLDC.ESC_PWM = ESC_PWM; 

  
return 

  



-67- 

CHAPTER 5: STATE MACHINE UPDATE 

FUNCTION 

This is the code for the simple state machine that controls the RC car. 

 

function CONTROL_OUT = STATE_MACHINE(CONTROL_IN) 

  
%% COPY CONTROL BUS 
CONTROL_OUT = CONTROL_IN;  

  
%% TIME UPDATE 
% SAMPLING TIME 
SAMPLING_TIME = CONTROL_OUT.PARAM.SAMPLING_TIME; % s 
% 6-bit SAMPLING COUNTER 
SAMPLING_COUNT = CONTROL_OUT.STATE.SAMPLING_COUNT; 
SAMPLING_COUNT = SAMPLING_COUNT + uint8(1); 
if SAMPLING_COUNT > uint8(63)  
    SAMPLING_COUNT = uint8(0); 
end 
CONTROL_OUT.STATE.SAMPLING_COUNT = SAMPLING_COUNT; 
% BOOTING TIME IN MILLISECONDS 
TIME_BOOT_MS = CONTROL_OUT.STATE.TIME_BOOT_MS; 
TIME_BOOT_MS = TIME_BOOT_MS + uint32(1000*SAMPLING_TIME); 
CONTROL_OUT.STATE.TIME_BOOT_MS = TIME_BOOT_MS; 
% UNIX TIME IN MICROSECONDS 
TIME_UNIX_US = CONTROL_OUT.STATE.TIME_UNIX_US; 
TIME_UNIX_US = TIME_UNIX_US + 1e6*double(SAMPLING_TIME); 
CONTROL_OUT.STATE.TIME_UNIX_US = TIME_UNIX_US; 
AUX = TIME_UNIX_US*2^32; 
CONTROL_OUT.STATE.TIME_UNIX_US_LSB = uint32(AUX); 
AUX = TIME_UNIX_US - double(uint32(AUX)*2^32); 
CONTROL_OUT.STATE.TIME_UNIX_US_MSB = uint32(AUX); 
TIMER = CONTROL_OUT.STATE.TIMER; 

  

  
%% OPERATION MODES 
CURRENT_STATUS = CONTROL_OUT.STATE.CURRENT_STATUS; 
PREVIOUS_STATUS = CONTROL_OUT.STATE.PREVIOUS_STATUS; 
% / 0. BOOTING          / 1. SENSOR CALIBRATION / 2. SETTING OPERATION 

HEIGHT  
% / 3. STANDBY            / 4. LOCKED MOTORS      / 5. SYSTEM 

OPERATION         
% CONTROL_MODE: 
% / 0. INITIALIZATION           / 1. ESTIMATION             / 2. 

SETTING OPERATION POINT  
% / 3. TESTING VELOCITY CONTORL / 4. VELOCITY CONTROL ONLY  / 5. FULL 

CONTROL 
% / 6. MODEL TESTING 
% EKF_MODE: 
% / 0. NOT ENABLED             / 1. PITCH, ROLL AND POS Z 
EKF_MODE = CONTROL_OUT.STATE.EKF_MODE; 
MOTOR_MODE = CONTROL_OUT.STATE.MOTOR_MODE; 
% / 0. % SHUT DOWN / 1. ARMED MOTORS  / 2. THROTTLE UNLIMITED / 
SENSOR_CALIB_MODE = CONTROL_OUT.STATE.SENSOR_CALIB_MODE; 
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% / 0. UNCALIBRATED  / 1. CALIBRATING  / 2. CALIBRATED / 

  
% INPUTS 
SAFETY_SWITCH = CONTROL_OUT.INPUT.SAFETY_SWITCH; 
RESET = CONTROL_OUT.INPUT.RESET; 
STEERING = single(CONTROL_OUT.INPUT.RCRX.RAW_CH(3)); 
THROTTLE = single(CONTROL_OUT.INPUT.RCRX.RAW_CH(2)); 

  
% STATUS UPDATE 
switch CURRENT_STATUS 
    %-----------------------------------------------------------------

----- 
    case 0 % BOOTING 
        if TIMER >= 3 
            NEXT_STATUS = uint8(1); % SENSOR CALIBRATION 
            TIMER = single(0); 
        else 
            NEXT_STATUS = uint8(0); % CURRENT STATUS GOES ON 
        end 
        % UPDATE TIMER  
        TIMER = TIMER + SAMPLING_TIME;                        
        % CONTROL MODE: INITIALIZATION 
        CONTROL_MODE = uint8(0);      
        % EKF MODE: NOT ENABLED 
         EKF_MODE = uint8(0);      
        % MOTOR MODE: SHUT DOWN 
        MOTOR_MODE = uint8(0);                         
        % SENSOR CALIBRATION MODE: UNCALIBRATED 
        SENSOR_CALIB_MODE = uint8(0); 
    %-----------------------------------------------------------------

----- 
    case 1 % SENSOR CALIBRATION 
        if TIMER >= 30 
            NEXT_STATUS = uint8(2); % SETTING OPERATION POINT 
            % SENSOR CALIBTRIAON MODE: CALIBRATED 
            SENSOR_CALIB_MODE = uint8(2); 
            % TIMER RESET 
            TIMER = single(0); 
        else 
            NEXT_STATUS = uint8(1); % CURRENT STATUS GOES ON 
            % SENSOR CALIBRATION MODE: CALIBRATING 
            SENSOR_CALIB_MODE = uint8(1); 
            % UPDATE TIMER 
            TIMER = TIMER + SAMPLING_TIME; 
         end 
        % CONTROL MODE: INITIALIZATION 
        CONTROL_MODE = uint8(0); 
        % EKF MODE: NOT ENABLED 
        EKF_MODE = uint8(0);      
        % MOTOR MODE: SHUT DOWN 
        MOTOR_MODE = uint8(0); 

         
    %-----------------------------------------------------------------

----- 
    case 2 % SETTING OPERATION HEIGHT 
        if (CONTROL_OUT.INPUT.DIST_Z>0.051) 
            NEXT_STATUS = uint8(3); % STANDBY           
        else 
            NEXT_STATUS = uint8(2); % CURRENT STATUS GOES ON 
        end                          
        % CONTROL MODE: SETTING OPERATION POINT 
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        CONTROL_MODE = uint8(3);                         
        % EKF MODE: PITCH AND ROLL 
        EKF_MODE = uint8(1);      
        % MOTOR MODE: ACTIVE 
        MOTOR_MODE = uint8(1);         
    %-----------------------------------------------------------------

----- 
    case 3 % STANDBY 
        if SAFETY_SWITCH  
            NEXT_STATUS = uint8(4); % DISARMED MOTORS            
        else 
            NEXT_STATUS = uint8(3); % CURRENT STATUS GOES ON 
        end                          
        % CONTROL MODE: ESTIMATION 
        CONTROL_MODE = uint8(1);                         
        % EKF MODE: PITCH AND ROLL 
        EKF_MODE = uint8(1);      
        % MOTOR MODE: SHUT DOWN 
        MOTOR_MODE = uint8(0);                               
    %-----------------------------------------------------------------

----- 
    case 4 % LOCKED MOTORS 
        if THROTTLE == 1500 && STEERING == 1500 
            NEXT_STATUS = uint8(5); % UNLOCKING MOTORS 
        else 
            NEXT_STATUS = uint8(4); % LOCKED MOTORS            
        end                       
        % CONTROL MODE: ESTIMATION 
        CONTROL_MODE = uint8(1);                         
        % EKF MODE: EULER ANGLES 
        EKF_MODE = uint8(1);      
        % MOTOR MODE: SHUT DOWN 
        MOTOR_MODE = uint8(0);                         

    
    %-----------------------------------------------------------------

----- 
    case 5 % SYSTEM OPERATION 
        if SAFETY_SWITCH 
            NEXT_STATUS = uint8(5); % ARMED MOTORS           
        else 
            NEXT_STATUS = uint8(3); % READY              
        end 
        if RESET 
             NEXT_STATUS = uint8(0); 
        end 
        % MOTOR MODE: ACTIVE 
        MOTOR_MODE = uint8(1); 
        % CONTROL MODE: RUN (5) 
        CONTROL_MODE = uint8(5);                         
        % EKF MODE: EULER ANGLES 
        EKF_MODE = uint8(1);      

      
    %-----------------------------------------------------------------

----- 

     
    %-----------------------------------------------------------------

----- 
    otherwise 
        % NEXT STATUS 
        NEXT_STATUS = uint8(3);                       
        % CONTROL MODE: ESTIMATION 
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        CONTROL_MODE = uint8(0);                         
        % EKF MODE: EULER ANGLES 
        EKF_MODE = uint8(1);      
        % MOTOR MODE: SHUT DOWN 
        MOTOR_MODE = uint8(0);                         
end 

  

  
%% CONTROL BUS UPDATE 
% UPDATE PREVIOUS STATUS 
CONTROL_OUT.STATE.PREVIOUS_STATUS = CURRENT_STATUS; 
% UPDATE CURRENT STATUS 
CONTROL_OUT.STATE.CURRENT_STATUS = NEXT_STATUS; 
% UPDATE OPERATION MODES 
CONTROL_OUT.STATE.CONTROL_MODE = CONTROL_MODE; 
CONTROL_OUT.STATE.EKF_MODE = EKF_MODE; 
CONTROL_OUT.STATE.MOTOR_MODE = MOTOR_MODE; 
CONTROL_OUT.STATE.SENSOR_CALIB_MODE = SENSOR_CALIB_MODE; 
CONTROL_OUT.STATE.TIMER = TIMER; 



 

 


