

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

OPTIMIZATION OF BOARDING GATE

ASSIGNMENTS IN AIRPORTS

Autor: Guillermo Rodríguez-Auñón Molina

Director: Ali Haghani

Madrid

Julio de 2019

AUTHORIZATION FOR DIGITALIZATION, STORAGE AND DISSEMINATION IN THE

NETWORK OF END-OF-DEGREE PROJECTS, MASTER PROJECTS, DISSERTATIONS

OR BACHILLERATO REPORTS

1. Declaration of authorship and accreditation thereof.

The author Mr. /Ms. Guillermo Rodríguez-Auñón Molina _____________________________

HEREBY DECLARES that he/she owns the intellectual property rights regarding the piece of

work: Optimization of boarding gate assignments in airports that this is an original piece of

work, and that he/she holds the status of author, in the sense granted by the Intellectual Property

Law.

2. Subject matter and purpose of this assignment.

With the aim of disseminating the aforementioned piece of work as widely as possible using the

University's Institutional Repository the author hereby GRANTS Comillas Pontifical

University, on a royalty-free and non-exclusive basis, for the maximum legal term and with

universal scope, the digitization, archiving, reproduction, distribution and public communication

rights, including the right to make it electronically available, as described in the Intellectual

Property Law. Transformation rights are assigned solely for the purposes described in a) of the

following section.

3. Transfer and access terms

Without prejudice to the ownership of the work, which remains with its author, the transfer of

rights covered by this license enables: a) Transform it in order to adapt it to any technology

suitable for sharing it online, as well as including metadata to register the piece of work and

include "watermarks" or any other security or protection system. b) Reproduce it in any digital

medium in order to be included on an electronic database, including the right to reproduce and

store the work on servers for the purposes of guaranteeing its security, maintaining it and

preserving its format. c) Communicate it, by default, by means of an institutional open archive,

which has open and costfree online access. d) Any other way of access (restricted, embargoed,

closed) shall be explicitly requested and requires that good cause be demonstrated. e) Assign

these pieces of work a Creative Commons license by default. f) Assign these pieces of work a

HANDLE (persistent URL). by default.

4. Copyright.

The author, as the owner of a piece of work, has the right to: a) Have his/her name clearly

identified by the University as the author b) Communicate and publish the work in the version

assigned and in other subsequent versions using any medium. c) Request that the work be

withdrawn from the repository for just cause. d) Receive reliable communication of any claims

third parties may make in relation to the work and, in particular, any claims relating to its

intellectual property rights.

5. Duties of the author.

The author agrees to: a) Guarantee that the commitment undertaken by means of this official

document does not infringe any third party rights, regardless of whether they relate to industrial

or intellectual property or any other type.

b) Guarantee that the content of the work does not infringe any third party honor, privacy or

image rights. c) Take responsibility for all claims and liability, including compensation for any

damages, which may be brought against the University by third parties who believe that their

rights and interests have been infringed by the assignment. d) Take responsibility in the event

that the institutions are found guilty of a rights infringement regarding the work subject to

assignment.

6. Institutional Repository purposes and functioning.

The work shall be made available to the users so that they may use it in a fair and respectful way

with regards to the copyright, according to the allowances given in the relevant legislation, and

for study or research purposes, or any other legal use. With this aim in mind, the University

undertakes the following duties and reserves the following powers: a) The University shall

inform the archive users of the permitted uses; however, it shall not guarantee or take any

responsibility for any other subsequent ways the work may be used by users, which are non-

compliant with the legislation in force. Any subsequent use, beyond private copying, shall

require the source to be cited and authorship to be recognized, as well as the guarantee not to

use it to gain commercial profit or carry out any derivative works. b) The University shall not

review the content of the works, which shall at all times fall under the exclusive responsibility

of the author and it shall not be obligated to take part in lawsuits on behalf of the author in the

event of any infringement of intellectual property rights deriving from storing and archiving the

works. The author hereby waives any claim against the University due to any way the users may

use the works that is not in keeping with the legislation in force. c) The University shall adopt

the necessary measures to safeguard the work in the future. d) The University reserves the right

to withdraw the work, after notifying the author, in sufficiently justified cases, or in the event of

third party claims.

Madrid, on 2nd of July, 2019

HEREBY ACCEPTS

Signed……………………………………………

Reasons for requesting the restricted, closed or embargoed access to the work in the Institution's

Repository

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

OPTIMIZATION OF BOARDING GATE

ASSIGNMENTS IN AIRPORTS

Autor: Guillermo Rodríguez-Auñón Molina

Director: Ali Haghani

Madrid

Julio de 2019

OPTIMIZATION OF BOARDING GATE ASSIGNMENTS IN

AIRPORTS

Autor: Rodríguez-Auñón Molina, Guillermo

Director: Haghani, Ali

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN DEL PROYECTO

 En los tiempos actuales, el método de transporte más rápido es el avión. Se

realizan una inmensa cantidad de vuelos, que a su vez estos cubren una cantidad enorme

de kilómetros. Es por ello y por la estructura tan compleja del avión que es normal que

se produzcan retrasos debido a problemas técnicos tanto de mantenimiento como de

reparación. Estos retrasos muchas veces son un incordio para el pasajero que ve como

se convierte en una incertidumbre. El programa diseñado en este trabajo se encarga de

eliminar este periodo de desconocimiento.

 El objetivo del código creado es optimizar en real-time la asignación de las

puertas de embarque teniendo en cuenta los retrasos que van surgiendo en los vuelos. La

meta de esta optimización consiste en minimizar la distancia que recorre el pasajero

desde la entrada hasta la puerta de embarque. Esto aumentará el grado de satisfacción

del pasajero con respecto al aeropuerto.

 Para conseguir esta optimización, primero se guardarán los datos de los vuelos

que se lleven a cabo en el espacio de tiempo que deseamos estudiar en una hoja de

Excel, al igual que las distancias a las puertas de embarque desde la entrada, sus

nombres y las coordenadas en las que están localizadas estas puertas. Una vez escrito

todos estos datos los copiamos en un archivo de texto para que pueda ser leído por el

programa.

 Una vez conseguidos los datos, el programa se encargará de lo demás. Primero

creará una matriz que será optimizada sin tener en cuenta los retrasos. Esta primera

matriz se optimiza sola debido a que el código escrito para su optimización difiere de

aquellas que utilicen también la información de los retrasos. Después el programa

copiará las soluciones de este supuesto en otra matriz más grande, y las asignará al caso

0.

 Esta matriz es la que guardará las soluciones finales teniendo en cuenta los

retrasos que se hayan dado a conocer. Consiste en una matriz binaria de 4 dimensiones

(Y(i,j,k,d)), donde las primeras dos hacen referencia a las filas y columnas de la matriz,

que en este caso serán los vuelos y las puertas respectivamente. Si la celda contiene un

1, significa que el vuelo i está asignado a la puerta j. La dimensión k hace referencia al

tiempo. En cada momento de tiempo, el cual está dividido en escalones de 15 minutos

(por ejemplo, de 9:00 a 9:15 sería el momento 1), se mostrará el estado de las puertas de

embarque del aeropuerto. A su vez, la dimensión d va aumentando conforme se van

dando a conocer los retrasos. Es decir, cada vez que se recibe la información de que un

vuelo sufre un retraso, se optimizará la matriz en tiempo real. Para ello, conforme se

comuniquen los retrasos se irá corrigiendo la hoja de datos de la que se nutre el

programa para la asignación. Por ejemplo, si a las 14:00 se comunica el retraso de un

vuelo que aterriza a las 14:30, se implementará el cambio en la hoja de Excel y se

optimizará la asignación para actualizar la puerta de embarque de aquellos vuelos que se

puedan ver afectados, pero sin modificar aquellos ya aparcados en estas puertas. De esta

manera se evita que un avión sea mandado a otra puerta de embarque cuando ya se ha

enganchado a una y por consiguiente se haga desplazarse a los pasajeros también. En

caso de que en un mismo momento se comunique más de un retraso, la dimensión d

solo se optimizará una vez, y estos retrasos coincidentes serán optimizados a la vez.

Cada valor diferente de esta dimensión contiene una matriz diferente de tres

dimensiones, es decir, contiene la información de todas las puertas asignadas a los

vuelos en todos los instantes de tiempo que se hayan elegido para estudiar. Por ejemplo,

en el caso base que se estudió en 12 momentos diferentes se comunicaban retrasos, y

estudiábamos 62 escalones de tiempo. Por lo tanto, para cada uno de los doce momentos

el programa optimizó el estado de las puertas durante esos 62 escalones. El objetivo es

obtener una predicción para organizar el aeropuerto con los datos obtenidos de retrasos

en los vuelos en tiempo real.

 Finalmente, cuando se tienen los datos de la solución final con todos los retrasos,

el programa se encargará de mostrar una imagen de la terminal objeto de estudio (en

este caso, la T2 del aeropuerto Madrid-Barajas Adolfo Suárez) con los resultados

obtenidos de esta manera:

 Esta imagen es interactiva. En la columna de la derecha aparece un menú con

todos los momentos de tiempo estudiados y se puede seleccionar aquellos que se

deseen. Con esta manera de presentar se facilita en gran medida la capacidad de

comprobar y corregir aquellos datos que lleven a errores. A su vez ayuda a la correcta

visualización de la disposición óptima del aeropuerto. Si se desea se puede disponer de

varios momentos para comprobar que el avión no cambia de puerta en el tiempo que

está enganchado a la puerta de embarque o para corroborar que todo lleve su correcto

funcionamiento.

 El hecho de que el programa realice optimizaciones en tiempo real conlleva que

las dimensiones del programa aumenten considerablemente. Por ejemplo, en el caso

base, con 58 vuelos, 22 puertas de embarque, 63 escalones de tiempo y 12 retrasos, la

matriz solución contiene 1.045.044 valores, de los cuales a la solución final pertenecen

80.338. Esto significa que un 7,7% de los resultados son significativos.

OPTIMIZATION OF BOARDING GATE ASSIGNMENTS IN

AIRPORTS

Author: Rodríguez-Auñón Molina, Guillermo

Director: Haghani, Ali

Collaborating Entity: ICAI – Universidad Pontificia Comillas

PROYECT SUMMARY

 Currently, the fastest way of transport is the airplane. We perform a huge

amount of flights, and we cover an stratospheric number of kilometers as well. This and

the complexity of an airplane’s structure are the reason why we can usually fly delays in

flights due to maintenance or repair of this machines. These delays cause stress to the

passengers as the details of their flight become unknown for them.

 The model that has been designed in this thesis has marked as goal to eliminate

this period of uncertainty. The aim of the code that I created is to optimize in real-time

the assignment of boarding gates taking into consideration the delays that are ocurrying

to the flight.

 In order to achieve this Optimization, first we need to sabe the information of the

flights that will take place in the time that we desire to study in an Excel sheet, as well

as the distances from the main entrance to the boarding gates, their names and the

coordinates in which the gates are located. Once all of the data is written we copy it in a

text file so that the program is able to read it.

 When we have all the information collected in the text file, the code will do the

rest. Firstly it will create a matrix that will be optimized without considering the delays.

This matrix is optimized alone because the code to reach it is written in a different way

from the one we use when there are delays. After this, the program will copy the

solutions of this case in a bigger matrix, and will be assigned to the case 0.

 This matrix is the one that will save the final solutions taking into account the

delays that have been acknowledged. It consists of a binary matrix of four dimensions

(Y(i,j,k,d), where the first two indexes refer to the rows and columns of the matrix,

which are flights and gates. If the slot has the value 1, it means that th flight i is

assigned to gate j. The dimension k is set to indicate the timestep. For each timestep,

which is divided into steps of 15 minutes (for example, from 9:00 to 9:15 would be the

step 1), it will be shown the status of the boarding gates of the airport. On the other

hand, dimensión d will be increasing when the number of delays known rises. In other

words, each time the Airport controllers receive a notification that a flight has been

delayed, the matrix will be optimized in real time. In order for this to happen, we will

need to edit the data file where it obtains the flight information. For instance, if at 14:00

a delay is communicated related to a flight that lands at 14:30, a change in the Excel

sheet will be implemented and the assignment of boarding gates will be updated for

each of the flights that will be affected, but without modifying the Assignment of the

previous flights that are already attached to the gates. This way we can avoid that an

airplane is changed from one boarding gate to another with the following displacement

of passengers. In the evento that in a same timestep, more than one delay is detected, the

dimensión d will optimize just once, and these delays that coincide will be optimized at

the same time. For each different value of this index,the matrix contains a three

dimensión matrix which contains the information of all the boarding gate assigned to

each flights in all the timesteps that have been chosen to study. For example, in the

basic case that have been studied in twelve different moments the delays were

acknowledged. Therefore, for each and every one of this twelve timesteps the program

optimized the status of the gates during the sixty-two timesteps. The goal of this process

is to obtain an exact prediction to organize the airport with the data obatained on the

delay of the flights in real time.

 Finally, when we obtain the information on the final feasible solution taking into

consideration every delay we acknowledged, the program will carry out the task of

displaying an image of the final solution of the terminal that is being our object of study

(in this case it is the second terminal of the airport Madrid-Barajas Adolfo Suárez) with

the results collected in this way:

 This is an interactive image. In the column that is to the right of the picture there

is an index with all the timesteps studied and it can be chosen any timestep that we

want. This way of displaying the solution facilitates in big amount the ability to correct

and check that information that is not right. Furthermore, it helps tu visualize the

optimal disposition of the airplanes in the airport. If desired, we can display more than

one timestep with the objective of double checking that the same airplane is not moved

between boarding gates while it is already attached to one of them or to corroborate that

everything is functioning as it should be.

 The fact that this program optimizes in real time signifies that the dimension of

the feasible solution increases considerably. For instance, in the case that is being

studied here, we account for 58 flights, 22 boarding gates, 63 timesteps and 12 delays.

The matrix that collects the final solutions contains 1.045.044 slots, from which the

final solution only is reflected in 80.338 of them. This means that bearly an 8% of the

results are truly significant.

INDEX

INTRODUCTION AND APPROACH OF THE PROJECT .. 1

STATE OF THE ART .. 3

DESCRIPTION OF THE DEVELOPED MODEL .. 5

GOALS AND SPECIFICATIONS ... 5

DATA .. 5

MODEL... 7

IMPORTED DATA .. 7

VARIABLES .. 7

CONSTRAINTS ... 7

OBJECTIVE FUNCTION .. 8

CODE .. 9

ANALYSIS OF RESULTS ... 19

CONCLUSIONS ... 21

METHODOLOGY .. 21

RESULTS ... 21

RECOMMENDATIONS FOR FUTURE STUDIES .. 21

BIBLIOGRAPHY ... 23

APPENDICES ... 25

DATA COLLECTED ... 25

FULL CODE ... 29

1

INTRODUCTION AND APPROACH OF THE PROJECT

 One of the important aspects of airline operations is the assignment of flights to

gates. From a planning perspective, given the flight schedule and the available gates, a

preliminary assignment can be made using mathematical optimization and employing a

variety of objectives. This preliminary assignment of flights to gates can work well if all

flights operate on schedule. However, due to unforeseen circumstances, delays occur in

both arrival and departure of flights. These delays mean that sometimes the arriving

flights cannot arrive at the pre-assigned gates because the gate is occupied by a delayed

flight. By the same token, departing flights cannot leave from pre-assigned gates.

During the course of a day there are a lot of delays in flights due to numerous

circumstances, and sometimes the airport crew fails to solve it quickly and creates a lot

of uncertainty around the passengers. In these circumstances, a reassignment of flights

to gates in real-time is necessary.

 The aim of this project is to develop a model that can reassign flights to gates in

real time. This project is focused on creating a program that automatically solves the

gate assignment due to delays on flights, so people do not have to wait until a decision

is reached. The way to proceed would be just in the moment that the airport crew gains

acknowledge of the delay, write it on the data file so the program can optimize the

assignments with this new information.

2

3

STATE OF THE ART

 Due to the secrecy policy implemented in airports because of security reasons I

was not able to find current information of the operating systems of airports.

Nonetheless I was able to find a document dated on 2012 that describes the software

used on that date. Those will be the softwares I will describe below.

 On 2012, airports had various softwares available to assign the airport resources

(including boarding gates) like (FERN12):

• Sadama: this software is in charge of automatically assign the resources but

does not prevent delays. With this software delays would have to be handled

manually.

• Quintiq: in this case, it optimizes the resources in a automatic way on real time

so it can maximize the productivity and minimize the cost.

• SITA workbridge: it also optimizes the resources automatically and on real time

so there can be a situation analysis on each time and it can optimize the

resources accordingly.

• Sistema de Terminal Systems: it is a simulator in real time that shows the status

of the airport. It is useful because the coordinator can visualize the airport,

although the changes and assignments are left for the person encharged to

implement them manually.

4

5

DESCRIPTION OF THE DEVELOPED MODEL

GOALS AND SPECIFICATIONS

 The goals I set for this project were:

1. Apply real airport data with delays to the case in order to solve real life

problems that occurred in the past.

2. Optimize the assignment of boarding gates to airplanes to minimize the distance

covered by passengers in T2 of Adolfo Suárez-Barajas airport.

3. Accomplish to write a code that from some data written on Excel can optimize

the assignment of boarding gates to airplanes with their delays.

4. Display the airport image situation for each moment in time.

5. Transform the code from a simple optimizer to a real time optimizer.

 The model will be written on Xpress IVE software. This software belongs to

FICO and it is made specifically to code optimization models and run it to obtain a

feasible solution.

 For the specifications of the model it has four matrices of decision variables.

These four matrices will be obtained from the data collected on terminal T2 in Adolfo

Suárez-Barajas airport that will be shown afterwards. Using the data collected we will

minimize the objective function in order to achieve the smallest distance covered in the

airport by the passengers, applying the delays recorded in real time. Finally, when the

solution is obtained, a map of the terminal will be displayed with the gate assignments

shown for each timestep.

 The type of the problem will be a Binary Integer Program. This means that all

the decision variables in this model will only assume 0 or 1 values. As this is an

assignment problem, they will only be required to indicate if the gate is occupied or not.

In spite of being a Binary Integer Program, the data collected is not binary, it is made of

integer numbers, but it will be used to achieve the binary results

DATA

 Through the airport website I managed to obtain the flight information related to

the basic case. In the data we can differentiate between the flight information and the

gate information.

 The flight data collected belongs to the flights that arrive to and depart from the

terminal that is being studied from 9am to 12am on April 10th, 2019. The flights

selected where the ones where we could determine the time they were spending in the

6

airport. I discarded those flights that it could only be known the arrival time because

there is no reason to take them into account as they only leave passengers, so it won’t

affect the optimal solution.

 This data collected was saved into a matrix of that has as many rows as flights

and six columns. Each column of this matrix represents a different value:

• Column 1: arrival time.

• Column 2: timesteps spent in the gate.

• Column 3: contains the information related to the delay on arrival

• Column 4: same as column 3 but related to the departure

• Column 5: timestep at which the delay is acknowledged

• Column 6: number of passengers transported

 For coding reasons, I divided the time into timesteps of 15 mins starting at 9am,

so if an airplane arrives at 9:10, it will belong to timestep 1. All time data is displayed

the same way.

 The passenger information was retrieved supposing that they were flying at full

capacity. This is, with the airplane model I was able to find the number of seats it

accounted for. Although it is probable that there are always empty seats, I supposed it

was full to run the most extreme situation where there was more chaos in the airport.

 Also, there were flights that its matching arrival landed the previous day. In that

case, I supposed that it needed to be assigned to a gate an hour before the flight (4

timesteps).

 Then we have the gate information which is formed by data that reflect distances

between the terminal entrance and the different boarding gates (using Google Maps I

was able to measure them) and saved in a vector. I was also able to find the gate names,

which were also located in a vector, and using Xpress ploting code I created a matrix

where I stored the coordinates of the different gates into a matrix in order to display the

occupied gates in the following image:

7

MODEL

IMPORTED DATA

 Each problem before being solved needs to have its basic information imported.

For this problem we import the flight information fl(x,6), the distance between boarding

gate and entrance D(x), the name of the gates gates(x) and the coordinates of their

location C(x,2). All this data is imported from a text file, which obtains the information

from an excel sheet (copy and paste the information from the sheet to the file).

 For the basic case, the number of rows will be 57 for the flight information,

meaning that there are 57 flights in that time lapse. The number of gates is 22, which

reflects the number of rows for the vectors and matrices that gather the information

related to the distance, the names and the coordinates.

VARIABLES

1. X(x,y,z): binary. This matrix represents the assignment of boarding gates to

flights in real time in the utopic situation where we did not incur in delays. The x

value represents the number of flights, y the number of gates and z the timestep.

2. P(x,y): binary. This matrix represents the assignment of boarding gates to flights

not taking into account the time in the utopic situation where we did not incur in

delays. The x value and the y value represent the same as in matrix X.

3. K(x,y,z): binary. In this case, matrix K is equal to matrix X. Its main purpose is

to be able to copy matrix X solution into matrix Y.

4. Y(x,y,z,d): binary. Matrix Y has the same function as matrix X. They differ that

matrix Y will be optimized counting with the delays in real time. Indexes x, y

and z mean the same as in matrix X. The index d reflects the number of delays

happened in the period of time subject to study.

5. Q(x,y,d): binary. This matrix is the equal to matrix P for matrix X. The

difference with matrix P is that, as well as matrix Y, it will take delay into

consideration.

CONSTRAINTS

 First, I will show the constraints that affect the utopic case where delays don’t

affect the assignment:

1. ∑ 𝑋(𝑖, 𝑗, 𝑧) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑧𝑖
𝑖=1 : this constraint secures that at each timestep,

one gate is only assigned to one flight.

8

2. ∑ 𝑋(𝑖, 𝑗, 𝑧) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑧
𝑗
𝑗=1 : this constraint implements that at each

timestep one flight is only occupying one gate.

3. ∑ 𝑃(𝑖, 𝑗) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖
𝑗
𝑗=1 : same as constraint number 2.

4. ∑ 𝑋(𝑖, 𝑗, 𝑧) = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑧 𝑡ℎ𝑎𝑡 𝑓𝑢𝑙𝑓𝑖𝑙𝑙 𝑓𝑙(𝑖, 1) = 𝑧
𝑗
𝑗=1 : this enables a

flight to be assigned to a boarding gate when it lands.

5. ∑ 𝑋(𝑖, 𝑗, 𝑧) = 𝑋(𝑖, 𝑗, 𝑧 − 1) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,
𝑗
𝑗=1 𝑧 𝑎𝑛𝑑 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙(𝑖, 1) <

𝑧 𝑎𝑛𝑑 𝑓𝑙(𝑖, 1) + 𝑓𝑙(𝑖, 2) > 𝑧: this ensures that once a flight is assigned to a gate

it stays in that gate.

6. ∑ 𝑋(𝑖, 𝑗, 𝑧) = 𝑃(𝑖, 𝑗) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,
𝑗
𝑗=1 𝑧 𝑎𝑛𝑑 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙(𝑖, 1) <

𝑧 𝑎𝑛𝑑 𝑓𝑙(𝑖, 1) + 𝑓𝑙(𝑖, 2) > 𝑧: this constraint fixes the gate to the flight in order

to optimize it

7. In any other case, 𝑋(𝑖, 𝑗, 𝑧) = 0.

 Now I will show the constraints the affect the matrix Y and Q (I will not include

the constraints that are similar to the previous case like ensure that one flight is assigned

to only one gate as they are written the same way just adding the new d index):

8. 𝑌(𝑖, 𝑗, 𝑧, 𝑚) = 𝑌(𝑖, 𝑗, 𝑧, 𝑚 − 1) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑧 𝑎𝑛𝑑 𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑧 < 𝑛: where n is

the time at which the airport personal acknowledges of the delay, this constraint

fixes all the assignments previous to that moment because what was previously

assigned cannot be changed.

9. ∑ 𝑌(𝑖, 𝑗, 𝑧, 𝑚) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑚 𝑎𝑛𝑑 𝑧 𝑡ℎ𝑎𝑡 𝑓𝑢𝑙𝑓𝑖𝑙𝑙 𝑓𝑙(𝑖, 1) + 𝑓𝑙(𝑖, 3) = 𝑧
𝑗
𝑗=1 :

this enables a flight to be assigned to a boarding gate when it lands when it is

delayed.

10. ∑ 𝑌(𝑖, 𝑗, 𝑧, 𝑚) = 𝑌(𝑖, 𝑗, 𝑧 − 1, 𝑚) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑚,
𝑗
𝑗=1 𝑧 𝑎𝑛𝑑 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙(𝑖, 1) +

𝑓𝑙(𝑖, 3) < 𝑧 𝑎𝑛𝑑 𝑓𝑙(𝑖, 1) + 𝑓𝑙(𝑖, 3) + 𝑓𝑙(𝑖, 2) + 𝑓𝑙(𝑖, 4) > 𝑧: this ensures that

once a flight is assigned to a gate it stays in that gate.

11. ∑ 𝑌(𝑖, 𝑗, 𝑧, 𝑚) = 𝑄(𝑖, 𝑗, 𝑚) 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑚,
𝑗
𝑗=1 𝑧 𝑎𝑛𝑑 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑓𝑙(𝑖, 1) +

𝑓𝑙(𝑖, 3) < 𝑧 𝑎𝑛𝑑 𝑓𝑙(𝑖, 1) + 𝑓𝑙(𝑖, 3) + 𝑓𝑙(𝑖, 2) + 𝑓𝑙(𝑖, 4) > 𝑧: this constraint

fixes the gate to the flight in order to optimize it

12. In any other case, 𝑌(𝑖, 𝑗, 𝑧, 𝑚) = 0.

 Even though these constraints seem like organized in a chaotic order, later on in

the code entry I will show the order and explain how I implemented them.

OBJECTIVE FUNCTION

1. For the utopic case, the objective function to minimize will be

∑ ∑ 𝑓𝑙(𝑖, 6) ∗ 𝑃(𝑖, 𝑗) ∗ 𝐷(𝑗)
𝑗
𝑗=1

𝑖
𝑖=1 . This will inimize the total distance covered

by all the passengers who use the airport.

9

2. For the case where we study the delays, the objective function will be

∑ ∑ 𝑓𝑙(𝑖, 6) ∗ 𝑃(𝑖, 𝑗, 𝑚) ∗ 𝐷(𝑗)
𝑗
𝑗=1

𝑖
𝑖=1 . This function has the same purpose as the

previous one just differing in the delay of flights. Here m will represent the

greatest value of index d, as it will be the one that takes into account all the

delays that occur within our time of study.

CODE

 The code is divided into five parts. First, we need to call the functions of the

program we will need to use. After this, we will declare all the variables and assign

them their values (in case of matrices and vectors their dimensions). Then, we will save

into some vectors and matrices created the data collected on the case we are going to

study. The next step will be to write all the constraints that are required for the program

to carry out the optimization. Finally, we will display the results using the plotting tool.

Now, I will show the code part by part:

 In the initial part we find this:

 The function of this part of the code is to enable the access to the different tools

to optimize (“mmxprs”) and plot (“mmsvg”).

 Secondly, we need to write the variables:

 In this part of the code we will need to establish the size of the problem, that wil

be the number of flights, the number of gates, the number of timesteps and the number

of delays. In this case, the matrix of solutions will have a size of 58 flights, 22 gates, 62

10

timesteps and 12 delays. The rest of the declarations are the matrices ad vectors that we

will use in the next steps.

 With all our variables created, now we need to start filling them out and we will

start with the data collected:

 This step is used to initialize the information vectors and matrices. All the data

that is being saved it is being read from a text file (t222) which obtains the information

from an excel sheet (copy and paste from the excel sheet to the text file). For example,

the text file will look like this:

distance:

[

345

346

282

283

…]

data:

[

0 1 0 0 0 164

0 1 0 0 0 110

0 3 0 0 0 110

1 4 0 0 0 180

…]

11

gates:

[

D43

D44

D45

D46

…]

coordinates:

[112 79

107 79

98 79

94 79

…]

 In this example, the first position of the distance vector refers to the distance

between the main entrance and the first gate in the gates vector, in this case is D43. The

coordinates matrix indicates the horizontal and vertical position of this same gate in

order to display it in a map of 400x400 (the image shown with the plotting tool is

divided into 1600 squares).

 The data matrix indicates the flight information. If we observe it, we can

understand that the first flight will arrive at timestep 0 (it was already at the gate when

out time of study starts) and it is leaving at timestep 1 without any delays (columns 3, 4

and 5 are equal to 0). Finally, it carries 164 passengers.

 All of this information will be collected by the program and will organize the

disposition of the boarding gates to satisfy the consumer and enable them to walk the

minimum distance possible.

12

 After we have set all the information that we needed, we proceed to write the

main script. This will be separated in three parts. First, we will have the optimization of

the utopic case:

 In order to write the code, we used the constraints described in the previous

pages. The only part left to explain is the forall loop. The X matrix is like a picture of

the status of the airport for each timestep. Therefore, the function of this loop is to take

into account the timestep where the case is being studied and depending on whether the

flight has just arrived, had already arrived or didn’t arrive yet it decides to assign a gate,

assign the same gate that was given to it in the previous timestep or doesn’t assign a

gate to it. After everything is ready we optimize it so we obtain the results of the utopic

case.

13

 The second part is where we prepare the transition from the utopic case to the

delayed case:

 Here we copy the X values to K values. This step is a formality, as Xpress solver

does not allow to copy from one decision variable to another, we need to use K matrix

as a bridge. Then we set the first constraints for matrices Y and Q and then we copy

from K the solutions without delays to the index 0 of matrix Y.

 Finally, following all the previous preparations, we will write the constraints for

the delayed case and optimize it:

14

15

 So we arrive to the most complex part of the code. At the beginning we can find

m, n and p. M and n variables are used as counters. m will count the times at which

delays that are being detected. This way if two delays are acknowledged at the same

time, it will only count as one for m. For example, if m=2, this means that at time n

there have been detected two timesteps at which there have been delays transmitted to

the airport controllers, but there could be 4 delays already. n will count the timestep at

which is being detected the delay and afterwards it will be used to copy all the solutions

prior to that timestep from the previous matrix solutions (m-1). P will be used as a

binary variable to show if a delay has been detected or not in that timestep.

 When the program detects a delay (p=1), then it proceeds to copy the results

previous to that timestep n [Y(x,y,z,m)=Y(x,y,z,m-1)]. This way the status of the airport

in the moments before the acknowledgement of the delay will remain the same

(obviously as it wasn’t known before the airport cannot predict it). The reason to do this

is to only change future decisions.

 After everything in the previous timesteps is fixed, then we proceed to create the

constraints. Here the program differentiates between flights with delays are flights on

time. If the flight has delays (only delays that have been already acknowledged), it will

optimize it using the information on landing and take off delays. Apart from that, the

way to implement the constraints is the same as the utopic case. If it just landed it will

assign a gate. If it had already landed it will still assign the same ate as before. If it

hasn’t landed it will not assign a gate. For flights with delays that have not been already

detected, it will treat them as if they were on time flights (due to the fact that at that time

it is thought that they are on time).

 Finally, it will optimize the model and display in the output screen how the final

status of the airport will look like.

 The last part of the code contains the plotting script. It will transform the

solution that is saved into the matrix Y when d reached its maximum value (all delays

have been detected) into a visual solution. The code is written like this:

16

 The display of the visual solution will showcase an image of the terminal T2 that

is being studied and then there is the option of selecting the desired timestep and it will

display only that timestep. There is also the option to see the display of different

timesteps at the same time as well. Either way the image displayed will look like this:

 As it can be appreciated, in the right side there is an index of the timesteps and

by clicking on them they can be activated or deactivated. In the terminal image we can

17

see how the airplanes have been located on their assigned gates with their name written

below each airplane image.

 The option of displaying different timesteps at the same time is really useful to

double check that the airplanes are assigned to only one gate. It can be even

corroborated that it follows the instructions of the delays that are saved in the text file. It

is a tool that really enables the user to go over the solution in the easiest way possible.

Also the visualization is optimal to examine any mistake that the program made.

18

19

ANALYSIS OF RESULTS

 When I started this project, I set five goals that I wanted to achieve during the

process of creating this code:

1. Apply real airport data with delays to the case in order to solve real life

problems that occurred in the past: this was a task that due to the importance

it has for the code is was the longest to achieve. This was caused by the

transformation of real-life information into the data that my code demanded. For

instance, the arrival time needed to be changed into the timesteps. It was really

helpful that the airport web itself had all information on flights, including

delays, and boarding gates.

2. Optimize the assignment of boarding gates to airplanes to minimize the

distance covered by passengers in T2 of Adolfo Suárez-Barajas airport: this

belongs to what I called the ‘utopic case’ in this document. It is the first

optimization where the delays are not being processed. The hardest part of this

optimization was getting used to the timesteps and once I was confident on

understanding them everything came along faster than expected.

3. Accomplish to write a code that from some data written on Excel can

optimize the assignment of boarding gates to airplanes with their delays:

definitely this goal was more complicated than the previous one. Although some

parts were similar I had a hard time trying to develop a system so that the delays

were reflected properly in the code.

4. Display the airport image situation for each moment in time: this task was

really satisfying to achieve as it facilitated a lot the visualization of the final

results. I thought it helps to people to understand what the code is really doing

and is a really helpful tool when it comes to comparing results or checking that

everything is in its place.

5. Transform the code from a simple optimizer to a real time optimize:

definitely, albeit the hardest, it is the task that I enjoyed the most. It has been

really difficult to come up with this idea of implementing a fourth dimension in

the Y matrix so it can optimize the code delay by delay so it is a real-time

optimizer.

 After proving that all the milestones set at the beginning of the project have been

reached, I can conclude that the result is satisfactory.

20

21

CONCLUSIONS

METHODOLOGY

 I decided to use Xpress IVE because in the previous semester I was able to solve an

optimization problem of bus routes with this same program without any problem. The truth is that I

felt really comfortable using it and I had real confidence when it came to use it due to my

experience with it. Therefore, I went along with the decision of using Xpress. Probably there were

other programs that would have made the problem smaller (the final matrix is made of 79112 results

but in order to achieve it I need almost around a million solutions).

 In relation with the way the code is written, I am really satisfied. As I wasn’t able to

overwrite the constraints, I was forced to reimagine the problem creating enormous matrices with

more than two dimensions. I think I managed to achieve a well-structured program that leads to a

real-time feasible solution.

RESULTS

 The results I achieved I believe that were the ones my director asked for when he offered me

the assignment. The program really optimizes in real time the assignment of boarding gates taking

into consideration the delays that cannot be predicted due to unforeseen circumstances. Moreover,

the ability to display the results to ease the task of study and comparison I think that adds value to

the program. All over, the results fulfill the task I was awarded.

RECOMMENDATIONS FOR FUTURE STUDIES

 In airports there are a lot of aspects which can be used as optimization: saving of gas, airport

services (employees, cars, trucks…), etc. But I Think it would be interesting an optimization

implementing the ability to overcome the malfunction of boarding gates, as sometimes they can

break. This would take the program to the next level.

 From my point of view, another improvement could be the management of more than one

terminal or even the whole airport. It would create a huge group of datasets but as well would

increase the quality.

 And last but not least, the decrease of the size of the program so it can save space and be run

in less time.

22

23

BIBLIOGRAPHY

Aena. (2019, Abril 10). Aeropuerto Madrid-Barajas. Retrieved from

https://www.aeropuertomadrid-barajas.com/llegadas.html

Pérez, J. F. (2012). Creación de un simulador aeroportuario. Sistema experto de asignación en el

desembarque de pasajeros y generación de reglas a partir del conocimiento adquirido .

Madrid: Universidad Carlos III de Madrid .

24

25

APPENDICES

DATA COLLECTED

distance:

[

345

346

282

283

182

183

132

133

129

130

156

157

186

187

239

240

296

297

360

361

383

384

]

data:

26

[

0 1 0 0 0 164

0 1 0 0 0 110

0 3 0 0 0 110

1 4 0 0 0 180

1 3 10 10 0 180

2 3 0 0 0 180

3 3 0 1 3 164

4 2 0 0 0 110

8 3 0 0 0 165

9 3 0 0 0 166

10 4 1 1 12 212

10 4 0 0 0 85

11 3 0 0 0 132

12 3 1 2 10 180

13 3 0 1 14 190

13 3 0 0 0 199

13 3 0 0 0 164

13 9 0 0 0 164

14 3 0 1 15 164

17 1 0 2 18 164

18 7 0 0 0 120

19 4 0 0 0 120

19 6 0 0 0 299

19 5 1 1 17 120

19 6 0 0 0 196

20 5 1 0 18 299

20 4 0 0 0 186

20 4 0 0 0 156

20 13 0 2 25 174

21 4 0 1 23 180

27

22 4 0 0 0 166

22 3 0 0 0 180

24 3 0 1 25 186

25 4 0 2 27 186

27 4 0 0 0 180

27 6 2 1 25 166

29 4 0 0 0 270

30 3 0 0 0 164

30 4 0 0 0 253

31 4 1 1 29 141

31 4 0 0 0 165

31 4 0 0 0 180

32 3 0 0 0 164

34 4 0 0 0 186

35 3 0 1 36 190

37 4 0 0 0 85

38 4 0 0 0 156

39 3 0 0 0 110

39 4 0 0 0 180

41 2 0 0 0 110

41 5 0 0 0 144

43 3 0 0 0 164

43 5 0 0 0 190

45 4 0 0 0 186

46 3 0 0 0 145

46 3 0 0 0 141

49 3 0 0 0 132

54 3 0 0 0 110

]

gates:

28

[

D43

D44

D45

D46

D47

D48

D49

D50

D53

D54

D55

D56

D57

D58

D59

D60

D61

D62

D63

D64

D65

D66

]

coordinates:

[112 79

107 79

98 79

94 79

84 83

29

80 86

72 90

67 90

47 90

42 90

40 87

36 87

33 84

28 84

23 78

19 76

14 72

10 69

4 65

1 60

-2 60

-4 57

]

FULL CODE

!@encoding CP1252

model ModelName

uses "mmxprs"; !gain access to the Xpress-Optimizer solver

uses "mmsvg" !gain access to the plotting function

!sample declarations section

declarations

 g=1..22 !number of gates

 f=1..58 !number of flights

 gates: array(g) of string !name of gates

30

 t=0..62 !total timesteps

 d=0..12 !number of delays

 fl: array(f,1..6) of integer !data of flights

 D: array(g) of integer !distance from entrance to gates

 C: array(g,1..2)of integer !coordinates of the gates

 X: array(f,g,t) of mpvar !occupancy of gates in real time without delay

 P: array(f,g) of mpvar !assignment of gates without delay

 K: array(f,g,t) of real !bridge

 Y: array(f,g,t,d) of mpvar !assignment of gates in real time with delays

 Q: array(f,g,d) of mpvar !assignment of gates with delays

 Objective:linctr

end-declarations

initializations from 't222.txt'

D as 'distance'

fl as 'data'

gates as 'gates'

C as 'coordinates'

end-initializations

forall(i in f, j in g, z in t)do !make X and P matrix binary

 X(i,j,z) is_binary

 P(i,j) is_binary

end-do

forall(j in g,z in t)do !constraint to make that each gate

 sum(i in f) X(i,j,z)<=1 !is assigned to only one flight at each time

end-do

forall(i in f, z in t)do !constraint to make that each flight

 sum(j in g) P(i,j)<=1 !is only assigned to one gate

31

 sum(j in g) X(i,j,z)<=1

end-do

forall(z in t)do

forall(i in f| fl(i,1)<=z)do !formulation to assign gates

 if(fl(i,1)=z)then

 sum(j in g) X(i,j,z)=1

 elif((fl(i,1)<z) and ((fl(i,1)+fl(i,2))>z))then

 forall(j in g)do

 X(i,j,z)=X(i,j,z-1)

 P(i,j)=X(i,j,z)

 end-do

 else

 sum(j in g) X(i,j,z)=0

 end-if

end-do

end-do

O:=sum(x in f, y in g) fl(x,6)*P(x,y)*D(y)

minimize(O)

forall(i in f, j in g, z in t)do

 K(i,j,z):=getsol(X(i,j,z))

end-do

forall(i in f, j in g, z in t, a in d)do

 Y(i,j,z,a) is_binary

 Q(i,j,a) is_binary

end-do

32

forall(j in g,z in t,a in d)do

 sum(i in f) Y(i,j,z,a)<=1

end-do

forall(i in f, z in t,a in d)do

 sum(j in g) Q(i,j,a)<=1

 sum(j in g) Y(i,j,z,a)<=1

end-do

m:=0

forall(i in f,j in g, z in t)do

 Y(i,j,z,m)=K(i,j,z)

end-do

m:=1

n:=0

while(m<=12)do

p:=0

while(p<1)do

forall(i in f)do

 if(fl(i,5)=n and ((fl(i,3)>0) or (fl(i,4)>0)))then

 p:=1

 end-if

end-do

if(p<1)then

33

 n:=n+1

end-if

end-do

forall(i in f, j in g, z in t| z<n)do

 Y(i,j,z,m)=Y(i,j,z,m-1)

end-do

forall(z in t, i in f| fl(i,1)<=z)do

 if(fl(i,5)<=n and ((fl(i,3)>0) or (fl(i,4)>0)))then

 if(fl(i,1)+fl(i,3)=z)then

 sum(j in g) Y(i,j,z,m)=1

 elif((fl(i,1)+fl(i,3)<z) and ((fl(i,1)+fl(i,2)+fl(i,3)+fl(i,4))>z))then

 forall(j in g)do

 Y(i,j,z,m)=Y(i,j,z-1,m)

 Q(i,j,m)=Y(i,j,z,m)

 end-do

 else

 sum(j in g) Y(i,j,z,m)=0

 end-if

 else

 if(fl(i,1)=z)then

 sum(j in g) Y(i,j,z,m)=1

 elif((fl(i,1)<z) and ((fl(i,1)+fl(i,2))>z))then

 forall(j in g)do

 Y(i,j,z,m)=Y(i,j,z-1,m)

 Q(i,j,m)=Y(i,j,z,m)

34

 end-do

 else

 sum(j in g) Y(i,j,z,m)=0

 end-if

 end-if

end-do

M:=sum(x in f, y in g) fl(x,6)*Q(x,y,m)*D(y)

minimize(M)

m:=m+1

end-do

forall(z in t) do

writeln('time is ',z)

forall(x in f, y in g| getsol(Y(x,y,z,12))<>0) do

 writeln('Gate ',gates(y),' is occupied by flight ', x)

end-do

end-do

svgsetgraphviewbox(-10,-10,140,140)

svgsave('AIRPORT_T2.svg')

svgaddfile('T2-salidas.jpg', 'T2-salidas')

svgaddfile('avionsitos.png', 'avionsitos')

svgaddtext(20,120, 'Boarding gate assignments')

a:=svggetlastobj

35

svgsetstyle(a, SVG_FONTSIZE, '6pt')

svgsetstyle(a, SVG_FONTWEIGHT, 'bold')

svgaddimage('T2-salidas',-10,-10,140,140)

forall(z in 10..10)do

 svgaddgroup(''+z,'t='+z, SVG_RED)

 forall(i in f,j in g | getsol(Y(i,j,z,12))<>0)do

 svgaddimage('avionsitos', C(j,1)-2.5, C(j,2), 5,5)

 svgaddtext(C(j,1)-2.5, C(j,2)-2,'flight'+i)

 pepi:=svggetlastobj

 svgsetstyle(pepi, SVG_FONTSIZE, '1pt')

 end-do

end-do

svgrefresh

svgwaitclose

end-model

