
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Optimal time route planning in dynamic wireless

software defined networks

Autor
Álvaro del Águila Martos

Directora
Dr. Janise McNair

Madrid
2020

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Optimal time route planning in dynamic wireless

software defined networks

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2019/20 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Álvaro del Águila Fecha: 09/Julio/ 2020

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Dr. Janise McNair Fecha: 09/Julio/2020

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Optimal time route planning in dynamic wireless

software defined networks

Autor
Álvaro del Águila Martos

Directora
Dr. Janise McNair

Madrid
2020

Acknowledgements

I would like to thank every person that has walked with me during the path of my
career these past 4 years. To my professors for giving me an excellent education
with professional knowledge and life values, and specially to Allen Starke and
Dr. Janise McNair for their help and support during this project.

I would like to give special thanks to my family for making all of this possible
and always believing in me, and to my friends who made these past years so
special to me.

Tiempo de planificación de ruta óptimo en redes

de software definidas dinámicas e inalámbricas

Autor: Álvaro del Águila Martos
Directora: Dr. Janise McNair

Palabras clave: SDN, ONOS, Mininet-WiFi, QoS

Resumen

Este proyecto presenta el desarrollo de un controlador para las redes definidas por
software (SDN) utilizando el controlador de ONOS. Se centra en los protocolos
de Reactive Forwarding y Segment Routing, modificando la aplicaión de Reactive
Forwarding, para asegurar una calidad de servicio (QoS) óptima en una red de
software definida dinámica e inalámbrica que siempre se cumpla.

Introducción

La red definida por software (SDN) es una arquitectura de red emergente que está
ganando importancia y peso en la actualidad. Es una tecnoloǵıa de red eficiente
que cumple las necesidaes de funcionalidad dinámica de nuestras futuras redes con
el aspecto cŕıtico de simplificar hardware con software, dando beneficios tales como
la reducción de costes.[1] Las SDN diferencian y separan el plano de control del
plano de datos del hardware que realiza el switching. El software es empleado para
realizar las funciones del plano de control, reduciendo el uso de hardware y sus
requerimientos. Este software se llama controlador, el cual es centralizado y tiene
una visión completa de la red. El controlador se construye a base de aplicaciones
en código Java que pueden ser creadas por cualquier fuente externa o usuario.
Este proyecto se centra en encontrar la mejor combinación de aplicaciones y su
modificación, para obtener el controlador de ONOS que garantice una calidad de
servicio constante en una red definida por software dinámica e inalámbrica.

Descripción del sistema

Todos los experimentos fueron realizados en una máquina virtual de Ubuntu, con
8GB de RAM y 2 CPUs, en un equipo con 16GB de RAM y un Intel(R)Core(TM)i7-
3520M CPU @ 2.90GHz.

Figure 1: Plano de control y plano de datos en el que se basan las SDN

Los programas empleados fueron Mininet con su extensión Mininet-WiFi para
crear la topoloǵıa dinámica usando código en Python, ONOS para establecer el
controlador con aplicaciones creadas en código Java, Wireshark para capturar el
flujo de paquetes y evaluar los datos obtenidos, y HTOP para visualizar el uso de
hardware.

Para ejecutar los experimentos, primero se inicializa el controlador de ONOS
cargando todas sus aplicaciones. Después, una topoloǵıa inalámbrica y dinámica se
crea de manera virtual con Mininet-WiFi, que conecta sus puntos de acceso (AP)
al controlador. El comando ”pingall” se ejecuta, que hace que cada host virtual de
la topoloǵıa realice ping a cada uno de ellos, para aśı observar qué aplicaciones dan
a la red una mayor conectividad, con menor pérdida de paquetes. Una vez elegidas
las aplicaciones más eficientes, su código es evaluado, cambiado y testeado para
obtener el controlador que elija la ruta más corta en términos del número de APs
por los que la informacion fluye (hop count) al enviar los paquetes de información.

Resultados

Las aplicaciones que mostraron los mejores resultados y que fueron seleccionadas
fueron las de Reactive Forwarding y Segment Routing. La aplicación de Reac-
tive Forwarding se modificó para seleccionar la ruta más corta de entre todas las
posibles para enviar los paquetes.

En función de la topoloǵıa empleada, diferentes resultados con mayor o menor
mejora fueron observados. Los experimentos finales fueron realizados en una
topoloǵıa de árbol ya que es la topoloǵıa empleada en los campus universitar-

Original Modified
Max. tiempo para seleccionar una ruta 1ms 5ms

Media de p/seg del reactive processor 572.6 574.3
Uso máximo de CPU 84.4% 85.2%

Uso máximo de memoria RAM 3.61GB 4.06GB

Table 1: Comparación de datos durante el experimento final.

Original Modified
Coste = 1.0 10% 13%
Coste = 2.0 34% 42%
Coste = 3.0 34% 25%
Coste = 4.0 10% 12%
Coste = 5.0 12% 8%

Table 2: Coste de rutas durante el experimento final.

ios[2], con un área de 1.96km2, 40 hosts, y 15 APs con un rango de alcance de
200m. Estas cifras son basadas en el campus de la Universidad de Florida[3], re-
duciendo las cantidades para aśı poder realizar la simulación, pero manteniendo
los mismos rangos y relaciones para aśı realizar los análisis más realistas posibles.

Se observa una gran mejora en el coste de las rutas, siendo el coste el número
de saltos que dan los packetes, o el número de APs por los que fluye la información
para ir de origen a destino, seleccionando los más cortos. Sin embargo, esta re-
ducción de coste requiere un incremento en pocos milisegundos en el tiempo de
selección de la ruta, debido al cambio de código, y también un ligero incremento
en el uso del hardware que además de deberse al cambio del algoritmo, también se
daŕıa por los programas ejecutados en segundo plano para realizar las mediciones
necesarias para el análisis, que pudieron haber funcionado consumiendo más re-
cursos.

Esto supone una gran mejora para las redes que tengan mayor dependencia de la
ruta a seguir, como es el caso de las redes WiFi[4], ; suponinendo una disminución
de latencia y mejorando la calidad de servicio (QoS), y futuros trabajos podŕıan
evaluar los avances realizados en este proyecto en redes de mayor tamaño para aśı
analizar cómo afectaŕıa a la red.

Optimal time route planning in dynamic wireless

software defined networks

Author: Álvaro del Águila Martos
Director: Dr. Janise McNair

Key words: SDN, ONOS, Mininet-WiFi, QoS

Abstract

This paper presents a SDN controller app development using an ONOS controller.
It focuses on the Reactive Forwarding and Segment Routing protocols, updating
the Reactive Forwarding application, to ensure that an optimal Quality of Service
in a dynamic wireless software defined network is always met.

Introduction

As an emerging networking architecture, Software defined networking (SDN) is
one of the most important new concepts that have been gaining weight these past
years. It is an efficient networking technology that supports the dynamic nature
functions of our future networks with the crucial aspect of simplifying hardware
through software, with many benefits such as lowering costs. [1] It differentiates
and separates the control plane and the data plane of the switching hardware.
Using software for the control plane functions, it reduces hardware usage and
requirements. That software is known as a controller, which is centralized and has
a complete view of the network. The controller is built with applications that can
be programmed by any external source or user in Java code. This paper is focused
on finding the best combination of applications and their modification, to build
an ONOS controller that would ensure that the Quality of Service in a dynamic
wireless software defined network is always met.

System Description

All the experiments were run in an Ubuntu Virtual Machine with 8GB of RAM and
2 CPUs, in a computer with 16GB of RAM and an Intel(R)Core(TM)i7-3520M
CPU @ 2.90GHz.

The programs used were Mininet with its Mininet-WiFi extension to create
the dynamic topology with python code, ONOS to establish the controller with

Figure 2: Control plane and data plane schemes regarding SDN

java code applications, Wireshark to capture the packets and evaluate the data
obtained, and HTOP to record hardware usage.

To run the experiments, first the ONOS controller was initiated and had all
its applications loaded. Then, a wireless dynamic topology was virtually created
using Mininet-WiFi, that would connect its Access Points to the controller. The
command ”pingall” was made, which would make every virtualized host do a ping
to each other to discover which applications gave the network a better connectivity
with less packet loss. After selecting the most efficient applications, their code was
evaluated, changed and tested to have the controller choose the shortest possible
paths in terms of AP hop count when sending packages of information.

Results

The applications that showed the best results and that were selected were the
Reactive Forwarding app and the Segment Routing app. The Reactive Forwarding
application was modified to select the shortest path from the possible ones.

Different results with more/less improvements were observed while running
tests on different topologies. The final tests were run on a tree topology with
40 hosts, 15 access points with a range of 200m, in an area of 1.96km2, since
that is the perfect topology for a university’s campus[2]. The tests were based on
the University of Florida’s campus[3], bringing the numbers down to be able to
simulate it, but keeping the same ratios and trying to be as realistic as possible.

A noticeable improvement can be seen in the path costs, being the number of
APs the packages had to go through from the source to their destination. However,

Original Modified
Max. time to select a route 1ms 5ms

Average reactive processor p/sec 572.6 574.3
Max. CPU usage 84.4% 85.2%

Max. RAM memory 3.61GB 4.06GB

Table 3: Data comparison during the final experiment.

Original Modified
Cost = 1.0 10% 13%
Cost = 2.0 34% 42%
Cost = 3.0 34% 25%
Cost = 4.0 10% 12%
Cost = 5.0 12% 8%

Table 4: Path costs during the final experiment.

there is a slight increase in the time to choose the path due to the algorithm mod-
ification and in the hardware usage not just because of the algorithm modification
but also due to the programs used to record the data that could be running less
efficiently.

This is a major improvement in networks that rely on the path to choose, like
WiFi based networks[4], reducing its latency and improving its quality of service
(QoS), and future works should test it on bigger networks to evaluate how it would
react.

Bibliography

[1] “[Yuanguo Bi, Guangjie Han, Chuan Lin, Yan Peng, Huayan Pu and Yazhou
Jia] Intelligent Quality of Service Aware Traffic Forwarding for Software-
Defined Networking/Open Shortest Path First Hybrid Industrial Internet”.
In: IEEE Transactions on Industrial Informatics 16.2 (February 2020).

[2] Campus Topology. url: https://www.conceptdraw.com/examples/what-
kind-of-topology-used-in-college.

[3] UF campus wireless network. url: https://net- services.ufl.edu/

provided-services/wireless/.

[4] The latency of a WiFi network. url: https://www.quora.com/What-is-
the-average-latency-of-a-WiFi-network.

xiii

https://www.conceptdraw.com/examples/what-kind-of-topology-used-in-college
https://www.conceptdraw.com/examples/what-kind-of-topology-used-in-college
https://net-services.ufl.edu/provided-services/wireless/
https://net-services.ufl.edu/provided-services/wireless/
https://www.quora.com/What-is-the-average-latency-of-a-WiFi-network
https://www.quora.com/What-is-the-average-latency-of-a-WiFi-network

Contents

1 Introduction 1
1.1 Defining SDN and its current state 1
1.2 Objectives of the project . 3
1.3 Motivation . 4

2 Background Information 5
2.1 Quality of Service . 5

2.1.1 Other definitions . 6
2.2 The ONOS Controller . 7

2.2.1 Open-Flow . 8
2.3 Mininet-WiFi . 8
2.4 Resources . 10

3 Development guides 11
3.1 Installation guide . 11
3.2 Building the system . 14

4 Methodology 17
4.1 Selecting the ONOS applications 17

4.1.1 Reactive Forwarding: The forwarding application 18
4.1.2 Segment Routing: A great addition. 18
4.1.3 App comparison . 19

4.2 Reactive forwarding modification 20
4.3 Finding the appropriate network for the final testings 23

5 Experimental Analysis 29

6 Conclusion 33

7 Future works 35

A Sustainable Development Goals of the project 37

xv

B Scientific paper 39

Bibliography 45

List of Figures

1.1 Control plane and data plane schemes regarding SDN 2

2.1 ONOS GUI. 7
2.2 Example of a dynamic topology run in Mininet-WiFi, with 40 hosts

and 6 APs. 9

3.1 ONOS Log in page. 14

4.1 The top picture shows the results obtained with reactive forwarding
and the bottom one with multicast forwarding. 19

4.2 Representation of a 15 AP tree topology 26
4.3 Representation of the dynamic tree topology from the ONOS GUI . 27

xvii

List of Tables

5.1 Data comparison during the final experiment. 30
5.2 Path costs during the final experiment. 31

xix

Listings

4.1 Modified Java code in the upper part vs original code in the com-
mented lower section . 21

4.2 Python script for the final topology used in the concluding experi-
ments. 23

xxi

Chapter 1

Introduction

1.1 Defining SDN and its current state

Moore’s Law states that every two years, the amount of transistors in a micropro-
cessor doubles in number.

This law has not been far from reality, and our society has experienced one of
the fastest technology growths this past decade, affecting specially the telecom-
munications field. New technologies have been created such as the Internet of
Things(IoT) and Big Data.

As new technologies develop, the coordination and management of large numbers
of devices will both be a requirement and a significant challenge. From Internet
of Things (IoT) devices to smart phones, tablets and laptops, to Unmanned Air
Vehicles (UAVs), to Small Satellites. Interoperability and on-demand communica-
tion paths require an adaptive approach to network management techniques that
can be employed to create a network management architecture.

As an emerging networking architecture, Software Defined Networking (SDN)
is one of the most important new concepts that have been gaining weight these past
years. It is an efficient networking technology that supports the dynamic nature
functions of our future networks with the crucial aspect of simplifying hardware
through software, with many benefits such as lowering costs. [1] It aims to make
the networks agile and flexible. The main characteristics that differentiate SDN
from any other network layer architectures are:

• Differentiation and separation of the control plane and the data plane of the
switching hardware.

The control plane makes decisions about how the packets travel around the
network, and the data plane moves the packets from host to host.

1

CHAPTER 1. INTRODUCTION

• Using software for the control plane functions, reducing hardware usage and
requirements. That software is known as a controller, which is centralized
and has a complete view of the network.

When a packet arrives at a data plane device (a network switch or access
point), it gives information about that traffic to the controller, and that
centralized controller sends rules to the data plane device to handle the
packet.

The controller would act as the ”brain” in a SDN.

• Open interfaces between the controllers and the devices located in the data
plane.

• Customization of the controller through applications that can be programmed
by any external source or user; which is what this paper is focused on.

Figure 1.1: Control plane and data plane schemes regarding SDN

In a software-defined network, the administrator can configure traffic from a
centralized control console without having to modify any individual switches or
access points in the network. [2]

2

1.2. Objectives of the project

This process introduces a major improvement from traditional network archi-
tectures, where individual network devices direct the traffic based on their own
configured routing tables.

This central controller presents a single point of failure, which can be seen as
a security benefit, but also a concern because if it was targeted by an attacker, it
could be fatal to the network. It has more targeted protection and simplifies its
firewall.

SDNs would be beneficial in many scenarios; for example in a campus network
where there is a need to unify WiFi and Ethernet networks. This paper will dig
more into this specific scenario.

Due to economy and compatibility reasons, having a full deployment of SDN
in just one step would not be a realistic approach, but with an increasing speed,
it will play an important role in our society in the near future. [3]

As a revolutionary concept, SDN is evolving in a fast pace. There are many
applications for different controllers that give different features and capabilities to
the network, with many possibilities for development and improvement.[4]

1.2 Objectives of the project

This project is focused on dynamic wireless software defined networks, to ensure
an optimal and constant quality of service using the Open Network Operating
System (ONOS) controller.

This project will evaluate all the options available to develop the optimal con-
troller:

• Finding the most suitable applications to build the best ONOS controller for
this topology characteristics.

• Revising and modifying their code to improve their efficiency and the QoS
in the network.

Establishing a working virtual machine capable of creating functional virtual
networks, with all the programs required, and learning how to use them all com-
bined, will be the first step to complete the previous stated objectives.

3

CHAPTER 1. INTRODUCTION

1.3 Motivation

As stated previously, this is a project focused in the future of the telecommunica-
tions field that brings a dynamic aspect to the network.

It is exciting to be part of a project that works on our future. Researching
about it and realizing its potential and how beneficial it is, before it being very
popular or well known. That gives a lot of motivation.

It brings more flexibility to configure the network, and improves the efficiency
of the network. It would also decrease the need of hardware and as a consequence,
it would lower costs. This new technology will bring many new possibilities for
our future.

4

Chapter 2

Background Information

2.1 Quality of Service

The Quality of Service QoS are a set of requirements that must be met in order
to have a proper network functionality and performance. [5]

There are different parameters that can measure the QoS of a network:

• Packet loss: When packages are dropped and not received to its destination.

• Latency: It is the time a packet takes to travel from the source to the
destination. It should be as close to zero as possible.

• Jitter: Congestion of the network, making the network slower.

• Bandwidth: It is the capacity of a network’s link to send the maximum
amount of data from one point to another in a determined time frame.

• Availability: Amount of time that the network is fully operating.

• Resilience: Capacity to recover in case a network failure occurs.

This project will be focused first in finding the applications that build the controller
that provides the network with less packet loss, and then a modification of those
to get as less latency as possible.

5

CHAPTER 2. BACKGROUND INFORMATION

2.1.1 Other definitions

• Switch: A hardware device that filters and forwards network packets.

• Access Point: Device that creates a wireless local area network, and transmits
data, connected to the controller with cables.

• Host: Device connected to the network that can send and receive informa-
tion.

• Link: A connection between two network devices.

• Virtual Machine (VM): A virtual machine (VM) is a virtual environment that
functions as a virtual computer system with its own CPU, memory, network
interface, and storage, created on a physical hardware system (located off- or
on-premises). Software called a hypervisor separates the machine’s resources
from the hardware and provisions them appropriately so they can be used
by the VM. [6]

• Hardware: Every physical electronic device. [7]

• Software: Programs running on the software. For example an operating
system like Windows.

• Firmware: Software semi-permanently placed in the hardware. It does not
”disappear when the hardware is turned off and to change it a special tool
or installation has to be used. For example the BIOS in a computer.

• Whitelist: In this scenario, a set of paths that have a priority to be used
when possible. Those paths are known to be fast and reliable.[8]

• Blacklist: Set of paths that are not allowed to be used. In this project’s
scenario; it would be paths that are known to fail.

• Ping: It is a basic tool that allows the user to know if an IP address exists
and can accept requests. Ping works by sending an Internet Control Message
Protocol (ICMP) Echo Request to a specified host on the network and wait-
ing for a reply. It can be used to test connectivity and determine response
time. The ping size in this project is 56 bytes.[9]

6

2.2. The ONOS Controller

2.2 The ONOS Controller

The controller used for this paper is the ONOS controller; which stands for Open
Network Operating System.[10]

It is a modular software that combining independent and different applications
and protocols to build a custom controller for a SDN, using Java code. The version
of ONOS installed is the developers edition, which lets you access the source code
and allows you to modify it.

It offers a graphical user interface (GUI) from where the controller can be
modified, the topology of the network that it is connected can be seen and ana-
lyzed, as well as showing real time information of the network’s traffic from every
networking element, which will be used in this project.

Figure 2.1: ONOS GUI.

7

CHAPTER 2. BACKGROUND INFORMATION

2.2.1 Open-Flow

As mentioned previously, the SDN controller is built with different applications
written in Java code. The most important one is the OpenFlow protocol; which
gives access to the forwarding plane of the network data devices such as a switch,
and allows the controller to determine the route of the packets across a network.
It is in charge of connecting the controller with the data plane.

2.3 Mininet-WiFi

Mininet is a SDN network emulator that simulates network devices such as vir-
tual hosts, switches, links and adds controllers, that run with the Linux network
software.[11]

Mininet-WiFi is an extension that adds WiFi stations and Access Points (AP)
based on wireless Linux drivers, which perfectly suits the wireless dynamic SDN
network needs that are demanded for this project. It supports OpenFlow, and it
can get connected to the ONOS controller, which is the controller used for this set
up.

Mininet-WiFi can run scripts programmed on Python, which gives freedom to
create different topologies for different tests and purposes. For the topic of this
paper, Mininet-WiFi gives the tools to create your custom dynamic SDN network,
adding as many hosts and APs as needed, with a defined range, and mobility with
different speeds and paths that can be programmed. That can provide the perfect
set up since the topology can experience different scenarios such as hosts getting
out of reach, or conflicts of hosts being in range with more than one AP.

In the next figure, a dynamic topology can be observed during different time
frames with its range. The numbers 0 to 39, represent the hosts with their range
in green colour; and from 40 to 45, access points with their range represented in
blue colour.

8

2.3. Mininet-WiFi

Figure 2.2: Example of a dynamic topology run in Mininet-WiFi, with 40 hosts
and 6 APs.

9

CHAPTER 2. BACKGROUND INFORMATION

2.4 Resources

All the experiments were run in an Ubuntu 18.04 Virtual Machine with 8GB of
RAM and 2CPUs, in a computer with 16GB of RAM and an Intel(R)Core(TM)i7-
3520M CPU @ 2.90GHz.

The programs used were Mininet with its Mininet-WiFi extension to create the
dynamic topology, ONOS to establish the controller and its GUI to get network
information, Wireshark; a network packet analyzer, to capture the packets and
evaluate the data obtained, and HTOP; an interactive system-monitor process-
viewer and process-manager, to record the hardware’s usage.

10

Chapter 3

Development guides

3.1 Installation guide

One of the most important processes was to get a fully working virtual machine
capable of creating dynamic wireless software defined networks with Mininet-WiFi
and using the ONOS controller. The virtual machine holder/creator used is the
Oracle VM VirtualBox.

There is more than one option to install every program, with more than one
optional extension as well. Those are open source programs that are not very
extended or popular, with fewer coverage of problems, and Mininet is not in its
final version at the moment, so some problems were found through the process of
having a working VM with all the needed features.

Here is a tutorial on how to install Mininet-WiFi and ONOS developers edition
in an Ubuntu 18.04 Virtual Machine:

Step0. Update and upgrade the VM:

• Start a new terminal and execute ”sudo apt-get update” to check if thee are
any updates in the firmware or in any software, registering them without
making any installations.

• Execute ”sudo apt-get upgrade”, which downloads and installs the software
updates if found in the previous update command.

• Go to Step1.

Step1. Install Linux networking software and drivers, necessary to operate Mininet
correctly.

• Start a new terminal and execute ”sudo apt install net-tools”

11

CHAPTER 3. DEVELOPMENT GUIDES

• Go to Step2.

Step2. Install Mininet:
The website used was ”http://mininet.org/download/”, following the second op-
tion.

• Start a new terminal and execute ”sudo apt-get install git” to install GitHub;
a repository hostig service.

• Execute ”git clone git://github.com/mininet/mininet” to copy the Mininet
installation files.

• Run ”mininet/util/install.sh -a”

• Execute Step0 again to check that the software is in its lates version and
then go to Step3.

Step3. Install Mininet-WiFi:
This is the website used for this step: ”https://github.com/intrig-unicamp /mininet-
wifi”

• Start a new terminal and execute ”git clone https://github.com/intrig-unicamp/mininet-
wifi”

• Execute ”cd mininet-wifi”

• Execute ”sudo util/install.sh -Wlnfv”

• Execute Step0 again to check if there are any software updates and then go
to Step4.

Step4. Install the ONOS controller: This is the website used: ”https://wiki.onosproject.org/
display/ONOS/Developer+Quick+Start”

• Go to the Bazel website to install bazel; a program needed to install and run
the ONOS controller: ”https://docs.bazel.build/versions/master/install.html”

• Click on ”Ubuntu Linux”.

• Follow the ”Using Bazel’s apt repository”

• Start a new terminal and execute ”sudo apt install curl”; a program needed
to install bazel; which is needed to install and run ONOS.

• Execute ”curl https://bazel.build/bazel-release.pub.gpg — sudo apt-key add
-”

12

3.1. Installation guide

• Execute ”echo ”deb [arch=amd64] https://storage.googleapis.com/bazel-apt
stable jdk1.8” — sudo tee /etc/apt/sources.list.d/bazel.list”

• Execute ”sudo apt update && sudo apt install bazel”

• Execute ”sudo apt update && sudo apt full-upgrade”

• Execute ”sudo apt install openjdk-11-jdk”

• Go back to ONOS develope quick guide - https://wiki.onosproject.org/display/
ONOS/Developer+Quick+Start

• Install all of the ”Other dependencies” on this page by executing ”sudo apt-
get install ¡dependency¿”, replacing ¡dependency¿ with each name in the
list.

• Execute ”git clone https://gerrit.onosproject.org/onos”

• Execute ”cd onos”

• Execute ”bazel build onos”

Two tutorial VMs with Mininet and ONOS already installed with tutorials to
test them and get to know them can be found at:

• https://wiki.onosproject.org/plugins/servlet/mobile?contentId=622595#content/
view/1638475

• http://sdnhub.org/tutorials/sdn-tutorial-vm/

Those virtual machines are a great source to learn and get started, before building
your own VM with all your needs.

13

CHAPTER 3. DEVELOPMENT GUIDES

3.2 Building the system

In order to run experiments; a process has to be followed to build the system.
Step0. Cleaning residual Mininet achieves.

• Start a new terminal and go to the folder where the Mininet python script
is located with the ”cd” command.

• Execute ”sudo mn -c” to get rid of all the residual files generated in other
runs in order to start a new clean run.

Step1. Start a clean ONOS controller

• Start a new terminal and go to the onos folder with the ”cd” command

• Execute ”sudo bazel run onos-local – clean debug” to start a clean controller
with no residual files or configurations from other runs. This process will
take a few minutes. After the READY status is stated, go to Step2.

Step2. Build the ONOS controller

• Open a web browser and go to ”http://localhost:8181/onos/ui”

• Access by user:”onos” and password:”rocks”

Figure 3.1: ONOS Log in page.

• Go to the applications section in the ONOS GUI and activate the apps that
will build the controller.

14

3.2. Building the system

Step3. Start the Mininet network.

• Start a new terminal and go to the folder where the Mininet python script
is located with the ”cd” command.

• Execute ”sudo python NameOfTheScript.py”

After those steps, everything will be built in order to run new tests and exper-
iments. When finished, it is recommended to run Step0.

15

CHAPTER 3. DEVELOPMENT GUIDES

16

Chapter 4

Methodology

This chapter will explain, in order, all the processes followed for the development
of this project.

4.1 Selecting the ONOS applications

The ONOS controller is built with the combination of applications that will add
different features or characteristic to the controller.

The applications preinstalled when starting the controller are ”Default Drivers”
and ”ONOS GUI2”. Installing ”OpenFlow Provider Suite” which automatically
installs ”OpenFlow Base Provider” is essential in order to connect the controller
to the Mininet network. The applications ”Reactive Forwarding” and ”Segment
Routing” are the additions that will be explained in this project, which will build
the optimal ONOS controller.

17

CHAPTER 4. METHODOLOGY

4.1.1 Reactive Forwarding: The forwarding application

When considering the forwarding application, possible options that ONOS offered
and that were evaluated are:

• Multicast Forwarding; which sends in one transmission information from a
host to a group of hosts. This application is more efficient when there are
established groups that do not change much, which means that it works
better in a proactive manner in which the routes are established prior to
sending the data. It would not be mostly efficient in a dynamic network.

• Reactive Forwarding; which installs forwarding entries to the network switches
on-demand after a sender starts transmitting packages. When a package is
sent, the app handles the packet and configures the package accordingly. It
works choosing from the shortest paths in hops count, using the shortest
path algorithm. In this scenario, a hop count is the number of APs that a
package travels through from the source to the destination. It is ideal for
dynamic networks.

After running tests on a dynamic topology, with the multicast forwarding pro-
tocol, over 15% of more packages were lost, while with the reactive forwarding
protocol, an important increase of packages per second, as will be shown in the
”App comparison” section’s Figure, combining all the final chosen applications,
and differentiating this two forwarding apps.

4.1.2 Segment Routing: A great addition.

The controller is built from combining applications, and a great addition to the
collection that increases the Quality of Service (QoS) and has other benefits is
Segment Routing.

[12]It divides the network in segments and each node and link have their own
segment ID or SID, while using the shortest path algorithm for their segments,
which is the same approach that the reactive forwarding application does. That
optimizes the fast reroute schemes and gives simplicity and scalability attributes
combined with advanced protection.

18

4.1. Selecting the ONOS applications

4.1.3 App comparison

The following tests were acquired with all the applications installed but differen-
tiating the forwarding application.

Figure 4.1: The top picture shows the results obtained with reactive forwarding
and the bottom one with multicast forwarding.

An important increase of packages per second is observed. Reactive forwarding
reaches more than 280 packages/second and multicast forwarding only reaches 120.
Those graphs were obtained with the program Wireshark. The dynamic wireless
software defined network used to run the tests had 40 hosts and 6 access points in
a linear topology, doing ”pingall” to compare the packages received/lost.

Tests run with only the reactive forwarding application reveal that after adding
the segment routing application, the number of delivered packages increased 4%
and the maximum number of packages per second increased from 200 to over 280,
improving the QoS.

19

CHAPTER 4. METHODOLOGY

4.2 Reactive forwarding modification

Once the final applications were chosen, their code was reviewed to check what
could be done to improve the final controller. There were TODO sections, with
features that could be added, and other comments in which functions could be
changed to have a better functionality.

However, the focus was held in the process of selecting the path to follow, which
was held by the Reactive Forwarding app, in the script ”ReactiveForwarding.java”.
The function ”Set Path getPaths(Topology topology, DeviceId src, DeviceId dst)”
returns a set of all the shortest paths, precomputed in terms of hop-count, between
the specified source and destination devices, as stated in the script ”TopologySer-
vice.java”.

Different functions to get the shortest paths were studied to see if it could mean
an improvement to the controller, although it was not possible to make them com-
patible with the Reactive Forwarding app, as it will be explained in the following
points:

• The k-shortest path is already implemented in ONOS. However, it gives a
Stream of paths, and the Reactive Forwarding application works with a Set
of paths, giving incompatibilities in some functions.

• Yen’s algorithm [13] is a modified version of the k-shortest path. It works
with graphs, and the Reactive Forwarding app works with topologies, and
its definition of basic elements and their functions such as Paths or Links are
different, not being able to work together without a complete transformation.

After that process, the function ”Path pickForwardPathIfPossible(Set Path paths,
PortNumber notToPort)” was changed.

20

4.2. Reactive forwarding modification

Originally, the chosen function would pick a random path of the Set of shortest
paths which would not lead back to the specified port of origin. That approach
could be beneficial with less time and less resources consumed to select the path
to follow, knowing that the chosen path would already be one of the shorter ones
from the ”getPath” function.

However, that function was modified to check all the paths and keep the one
with the lower cost, instantly returning a direct path with cost 1.0 if found. That
would make sure that the shortest path in terms of cost was followed. The cost is
measured in the AP hops count. That is how many APs a package goes through
from the source to the destination. In the Experimental Analysis chapter, the
results and the impact in that change will be discussed.

// S e l e c t s a path from the g iven s e t that does not l ead back to the
s p e c i f i e d port i f p o s s i b l e .

p r i va t e Path p ickForwardPathI fPoss ib l e (Set<Path> paths , PortNumber
notToPort) {

Path bestPath = nu l l ;
f o r (Path path : paths) { // goes through a l l the paths

i f (! path . s r c () . port () . equa l s (notToPort)) {
i f ((bestPath == nu l l) | | (path . co s t ()<bestPath . co s t ())) {

bestPath=path ;
i f (bestPath . co s t () == 1 . 0) {
re turn bestPath ;
}

}
}

}
re turn bestPath ;

}

/∗ pr i va t e Path p ickForwardPathI fPoss ib l e (Set<Path> paths ,
PortNumber notToPort) {

f o r (Path path : paths) {
i f (! path . s r c () . port () . equa l s (notToPort)) {

re turn path ;
}

}
re turn nu l l ;

}∗/

Listing 4.1: Modified Java code in the upper part vs original code in the commented
lower section

21

CHAPTER 4. METHODOLOGY

22

4.3. Finding the appropriate network for the final testings

4.3 Finding the appropriate network for the final

testings

In order to get relevant results, a realistic topology structure was created.

The wireless dynamic topology was based on the University of Florida’s cam-
pus. UF’s campus has an area of 8km2, and around 52000 students registered;
from which not all of them would be connected to the campus network at once. In
2012, there were 1700 Access Points 802.11n, which have a range of 820 meters.
[14]

However, due to hardware limitations, simulating a topology with that amount
of components was not possible, and the numbers had to be measured down.

After tests with different number of elements, the biggest topology that the testing
machine could simulate and handle had 15 APs with a range of 200m, 40 hosts,
and an area of 1.96km2. The range and area were kept approximately with the
same ratio as the UF’s campus has, and a higher ratio of APs per host was chosen
since the following tests and simulations would be made to observe the cost of the
paths that would be chosen when sending packages from host to host. The velocity
of the movement of the APs and hosts positions was set between 0.5 and 5 m/sec
and the original seed was 3.
The code with every value to create it will be explained in the following Listing:

’ S e t t i ng mechanism to opt imize the use o f APs ’

from mininet . node import RemoteControl ler
from mininet . l og import setLogLevel , i n f o
from mn wif i . c l i import CLI
from mn wif i . net import Min in e t w i f i
import math

de f topo logy () :
”Create a network . ”
net = Min in e t w i f i (c o n t r o l l e r=RemoteControl ler)

p r i n t ”∗∗∗ Creat ing nodes”

s t a t = []
apt = []

23

CHAPTER 4. METHODOLOGY

n = 40 ”””40 hos t s ”””
m = 15 ”””15 APs”””

””” Creat ing and adding the APs and hos t s to the network ”””

f o r i in range (n) :
s t a t . append (’ s ta ’+s t r (i))

f o r i in range (m) :
apt . append (’ ap ’+s t r (i))

s ta = []
ap = []
p r i n t s t a t

f o r i in range (n) :
s ta . append (s t r (i))

p r i n t s ta

f o r j in range (n) :
s t a t [j] = net . addStat ion (s ta [j])

f o r i in range (n+1,n+m+1) :
ap . append (s t r (i))

f o r j in range (m) :
apt [j] = net . addAccessPoint (ap [j] , range=200) ”””The APs have a
range o f 200m”””

pr in t ap

c0 = net . addContro l l e r (’ c0 ’ , c o n t r o l l e r=RemoteControl ler)

p r i n t ”∗∗∗ Conf igur ing w i f i nodes ”
net . conf igureWif iNodes ()

p r i n t ”∗∗∗ Creat ing t r e e l i n k s ”

net . addLink (ap [0] , ap [1])
net . addLink (ap [0] , ap [2])
net . addLink (ap [1] , ap [3])
net . addLink (ap [1] , ap [4])
net . addLink (ap [2] , ap [5])
net . addLink (ap [2] , ap [6])
net . addLink (ap [3] , ap [7])
net . addLink (ap [3] , ap [8])

24

4.3. Finding the appropriate network for the final testings

net . addLink (ap [4] , ap [9])
net . addLink (ap [4] , ap [1 0])
net . addLink (ap [5] , ap [1 1])
net . addLink (ap [5] , ap [1 2])
net . addLink (ap [6] , ap [1 3])
net . addLink (ap [6] , ap [1 4])

”””
Log−Distance path l o s s model i s a model that p r e d i c t s the s i g n a l
l o s s around bu i l d i n g s or with a l o t o f u s e r s around i t s d i s t anc e .
The b igge r the exponent , the b igge r the l o s s .
The exponent o f 5 was chosen as i f the re was much indoor s
i n t e r f e r e n c e such as bu i ld ing s , labs , s p o r t i v e areas , or a stadium
”””
net . setPropagationModel (model=” logDi s tance ” , exp=5)

””” p l o t t i n g graph , and s e t t i n g i t s wide and length in meters ”””
net . plotGraph (max x=1400 , max y=1400)

””” Set mob i l i ty f o r each node”””

net . setMobi l i tyModel (time=0, model=’RandomWayPoint ’ , max x=1400 ,
max y=1400 , min v=0.5 , max v=5, seed=3, ac method=’ l l f ’)
”””
time : time (in seconds) in which the mob i l i ty i s s t a r t ed
model : mob i l i ty model
max x : maximum x po s i t i o n
max y : maximum y po s i t i o n
min v : minimum moving v e l o c i t y in m/ s
max v : maximum moving v e l o c i t y in m/ s
seed : d e f i n e s a s t a r t i n g value f o r a pseudo random sequence
ac method : handover a s s o c i a t i o n mechanism . The one used i s : l a s t
loaded f i r s t
”””

p r in t ”∗∗∗ Sta r t i ng network”
net . bu i ld ()
c0 . s t a r t ()

f o r o in range (l en (apt)) :
apt [o] . s t a r t ([c0])

i n f o (”∗∗∗ Running CLI\n”)
CLI(net)

i n f o (”∗∗∗ Stopping network\n”)
net . stop ()

25

CHAPTER 4. METHODOLOGY

i f name == ’ ma in ’ :
se tLogLeve l (’ i n f o ’)
topo logy ()

Listing 4.2: Python script for the final topology used in the concluding
experiments.

Figure 4.2: Representation of a 15 AP tree topology

Regarding the APs connections, a tree topology was chosen. [15] Campus
Area Networks are generally based on a tree topology, which is a hybrid topology
between the star and the bus topology. It is a more flexible and scalable network
since new ”branches” and APs can be added or modified easily, with a point to
point connection and featuring a centralized monitoring with easier maintenance
and fault finding. It is ideal for a large network such as the campus of a university.
However, it needs a lot of maintenance and the backbone (or main AP) forms a
point of failure.

26

4.3. Finding the appropriate network for the final testings

Figure 4.3: Representation of the dynamic tree topology from the ONOS GUI

27

CHAPTER 4. METHODOLOGY

28

Chapter 5

Experimental Analysis

The following test results were made with a dynamic network of 15 APs in a tree
structure topology, and with 40 host that will ping all with each other, as stated
in the Methodology chapter.

There were different results when tested in different starting times, and each test
would show different variations of results and improvements. Nevertheless, some
critical analysis can show the contrast in using each version of the algorithm. The
packages delivered/lost had no noticeable difference, but the cost of the followed
paths showed a differentiation.

29

CHAPTER 5. EXPERIMENTAL ANALYSIS

Original Modified
Max. time to select a route 1ms 5ms

Average reactive processor p/sec 572.6 574.3
Max. CPU usage 84.4% 85.2%

Max. RAM memory 3.61GB 4.06GB

Table 5.1: Data comparison during the final experiment.

As the upper table shows, this algorithm change does not show a significant
amount of extra hardware usage. Those results were obtained using HTOP, the
ONOS GUI, and Wireshark, which can sometimes saturate the system and be a
reason of why for example there is a 0.45GB difference in the RAM memory usage.

The time to select a package was mostly at very low values. However, in very
rare occasions, that time was increased to higher values such as 15 ms in both
versions.
Since the process in selecting a path is more complex in the newer version, it is
expected to have a very few extra milliseconds in selecting the shortest path. That
slight difference did not make any noticeable impact in the amount of delivered
packages. Nevertheless, this algorithm should be tested on a bigger network to see
how it would affect a bigger scale network such as the campus of a university.

30

Original Modified
Cost = 1.0 10% 13%
Cost = 2.0 34% 42%
Cost = 3.0 34% 25%
Cost = 4.0 10% 12%
Cost = 5.0 12% 8%

Table 5.2: Path costs during the final experiment.

The upper table shows the main difference when changing the algorithm. As
stated previously, the contrast can be stronger or lighter depending on the topol-
ogy and its current state. From this particular example, it can be perceived that
there were numerous cases in which there was only one possible path to follow,
and some other situations in which the original random algorithm chose the best
possible path. However, it is noticed that there is a major improvement in the
path costs, with major differences specially in the paths with 2 hops, focusing most
of the weight of the network in shorter and faster paths.

With all this data, depending on the speed of the network, this could mean a
major improvement in the QoS of a network.

• On a very fast optimized network that prioritizes sending the data as soon
as it gets received, a few extra milliseconds in selecting a path to only loose
a smaller time from using a shorter path, could lead into a slight increase in
the network’s latency, making the network slower. This case could apply to
wired networks which have a latency of less than 1 ms and specially on fiber
optics; which latency is 4.9 microseconds (4.9*10−3 ms) per kilometer.[16]

• When the network relies more on what path to choose from, this algorithm
could make a major improvement.

On WiFi (wireless fidelity) based networks, if the network is running opti-
mally, it would take about 1-4 ms per AP to go through for just a ping. In
this scenario, going through the path with less APs hop count would make
a major improvement.[17]

Another feature considered that could be useful would be to have a whitelist/black-
list system to choose from paths that are already known to be reliable and efficient
and discard the ones that frequently experience failures or slower speeds.
In the end, that feature was not added to this project due to the nature of a
dynamic network, having all the APs and hosts changing position, having situa-
tions in which paths from those lists could not exist anymore. If the APs did not

31

CHAPTER 5. EXPERIMENTAL ANALYSIS

change much or if they were static, that system could be a great addition for a
future project.

32

Chapter 6

Conclusion

In this paper, it has been discussed how a combination of the reactive forwarding
app and the segment routing app could build a great ONOS controller for a wire-
less dynamic Software Defined Network.

A new process in selecting the path to follow from the reactive forwarding app
is proposed, to choose the path with the least AP hops, which would be beneficial
specially for wireless networks.

The objectives proposed have been met, and future works are proposed to im-
prove the final controller.

33

CHAPTER 6. CONCLUSION

34

Chapter 7

Future works

Future works in this topic to improve the ONOS controller could be:

• Test the built controller with the new code in a bigger network to experience
more noticeable differences.

• An implementation of a k-shortest path type algorithm to make the selection
of shortest paths.

• An implementation of a whitelist/blacklist system.

35

CHAPTER 7. FUTURE WORKS

36

Appendix A

Sustainable Development Goals of
the project

This technology meets the goal number 9 of sustainable development goals estab-
lished by the United Nations which is ”Industry, Innovation and Infrastructure”.
This project meets that objective because it presents a system in which there will
be less hardware needed in processes where it would be necessary.

In this case it is with the software controller substituting the control plane hard-
ware, saving materials and energy that the extra hardware would require to run.
As a consequence, less energy would be used by less hardware to run the same
operations. Less hardware would be produced, saving materials, saving the pro-
duction energy, and as a consequence, less pollution would be thrown to the Earth,
and there would be less future residuals.
That would also benefit economically with less expenses.

37

APPENDIX A. SUSTAINABLE DEVELOPMENT GOALS OF THE
PROJECT

38

Appendix B

Scientific paper

During this project, a scientific paper was written.
It will be published when a conference or opportunity comes along.

39

Optimal time route planning in dynamic wireless
software defined networks

Alvaro del Aguila, Allen Starke, Dr. Janise McNair
Dept. of Electrical & Computer Engineering University of Florida; Gainesville, FL 32611

delaguila.alvaro@hotmail.com, allen1.starke@ufl.edu, mcnair@ece.ufl.edu

Abstract—This paper presents a SDN controller app devel-
opment using an ONOS controller. It focuses on the Reactive
Forwarding and Segment Routing protocols, updating and up-
grading them, to ensure that the Quality of Service in a dynamic
wireless software defined network is always met.

I. INTRODUCTION

Moore’s Law states that every two years, the amount of
transistors in a microprocessor doubles in number. This law
has not been far from reality, and our society has experienced
one of the fastest technology growths this past decade,
affecting specially the telecommunications.
New technologies have been created such as the Internet of
Things (IoT) or Big Data.

As new technologies develop, the coordination and
management of large numbers of devices will both be
a requirement and a significant challenge. From Internet of
Things (IoT) devices to smart phones, tablets and laptops,
to Unmanned Air Vehicles (UAVs), to Small Satellites.
Interoperability and on-demand communication paths require
an adaptive approach to network management techniques
that can be employed to create a network management
architecture.

Software defined networking (SDN) is one of the most
important new concepts that have been gaining weight these
past years, being able to separate the control plane from the
data plane, and to centralize the network with a controller,
which is software built with applications written on a high
level code, giving the opportunity for a dynamic maintenance
of the network. It brings more flexibility to configure the
network, and improves the efficiency of the network. It would
also decrease the need of hardware and as a consequence, it
would lower costs. More details on SDN will be given in the
next section.

However, due to economy and compatibility reasons, having
a full deployment of SDN in just one step would not be a
realistic approach, but with an increasing speed, it will play
an important role in our society in the near future. [1]

As a revolutionary concept, SDN is evolving in a fast pace.
There are many applications for different controllers that give
different features and capabilities to the network, with many
possibilities for development and improvement.[2]

This project is focused on dynamic wireless software de-
fined networks, to ensure an optimal and constant quality
of service using the ONOS controller. In this paper, it will

be discussed how segment routing and reactive forwarding
improve the QoS of this specific type of network. Those two
applications have open code that can be modified, adding
features that are stated to be missing and left to develop, and
creating a configuration that would optimize the controller.
The goal of this paper is to create a reliable controller that
assures an optimal and constant QoS.

II. BACKGROUND INFORMATION

A. Defining SDN
As an emerging networking architecture, Software Defined

Networking (SDN) is established as a promising concept for
our future. It is an efficient networking technology that sup-
ports the dynamic nature functions of our future networks with
the crucial aspect of simplifying hardware through software,
with many benefits such as lowering costs. [3]

The main characteristics that differentiate SDN from any
other network layer architectures are:

• Differentiation and separation of the control plane and
the data plane of the switching hardware.

• Using software for the control plane functions, reducing
hardware usage and requirements. That software is known
as a controller, which is centralized and has a complete
view of the network.

• Open interfaces between the controllers and the devices
located in the data plane.

• Customization of the controller through applications that
can be programmed by any external source or user; which
is what this paper is focused on.

Fig. 1. Control plane and data plane schemes regarding SDN

B. The ONOS controller

The controller used for this paper is the ONOS controller;
which stands for Open Network Operating System.[4]

As mentioned previously, the SDN controller is built with
different applications written in Java code.
One of the most important ones is the OpenFlow protocol;
which has a very important role in the controller, giving
access to the forwarding plane of a network switch or
router, and allowing the controller to determine the route
of the packets across a network. It is layered on top of the
Transmission Control Protocol (TCP) and establishes the use
of the Transport Layer Security (TLS).

When considering the forwarding application, possible
options that ONOS offered and that were evaluated are:

• Multicast Forwarding; which sends in one transmission
information from a host to a group of hosts. This appli-
cation is more efficient when there are established groups
that do not change much, which means that it works better
in a proactive manner in which the routes are established
prior to sending the data. It would not be mostly efficient
in a dynamic network.

• Reactive Forwarding; which installs forwarding entries
to the network switches on-demand after a sender starts
transmitting packages. When a package is sent, the app
handles the packet and configures the package accord-
ingly. It works choosing from the shortest paths in hops
count, using the shortest path algorithm. It is ideal for
dynamic networks.

After running tests on a dynamic topology, it is observed that
with the multicast forwarding protocol, over 15% of packages
were lost, while with the reactive forwarding protocol, an
increase of packages per second could be observed, as the
Figure 2 shows. Reactive forwarding reaches more than 280
packages/second and multicast forwarding only reaches 120.
Those graphs were obtained with the program Wireshark. The
dynamic topology used to run the tests had 40 hosts and 6
access points in a mobile network, doing ”ping alls” with all
the hosts to compare the packages received/lost.

The controller is built from combining applications. A great
addition that increases the Quality of Service (QoS) and has
other benefits is Segment Routing. [5]It divides the network
in segments and each node and link have their own segment
ID or SID, while using the shortest path algorithm for their
segments, which what the reactive forwarding application
does. That optimizes the fast reroute schemes and gives
simplicity and scalability attributes combined with advanced
protection. The Figure 2 tests were acquired with the segment
routing application installed already. Tests run with only the
reactive forwarding application reveal that after adding the
segment routing application, the number of delivered packages
increased 4% and the maximum number of packages per
second increased from 200 to over 280, improving the QoS
and making it the starting point for the development of this
project.

Fig. 2. The top picture shows the results obtained with reactive forwarding
and the bottom one with multicast forwarding.

C. Mininet-WiFi

Mininet is a SDN network emulator that simulates virtual
hosts, switches, links and controllers, that run Linux network
software.[6]

Mininet-WiFi is an extension that adds WiFi stations and
Access Points (AP) based on wireless Linux drivers, which
perfectly suits the wireless dynamic SDN network needs that
are demanded for this project. It supports OpenFlow, and it can
get connected to the ONOS controller, which is the controller
used for this set up.

Mininet-WiFi can run scripts programmed on Python, which
gives freedom to create different topologies for different tests.
For the topic of this paper, Mininet-WiFi gives the tools to
create your custom dynamic SDN network, adding as many
hosts and APs as needed, with a defined range, and mobility
with different speeds and paths that can be programmed.
That can provide the perfect set up since you can experience
different scenarios such as hosts getting out of reach, or
conflicts of hosts being in range with more than one AP.

Fig. 3. Example of a dynamic topology run in Mininet-WiFi, with 40 hosts
and 6 APs.

III. METHODOLOGY

During this project, alternative approaches were tested.
The first tests were run on a smaller and less complex

dynamic topology. It had 40 nodes, 6 APs, and a linear
structure, doing ”ping alls” to test the percentage of packages
that would reach their destination.
Once the final applications were chosen, their code was
reviewed to check what could be done to improve the final
controller. There were TODO sections, with features that
could be added, and other comments in which functions
could be changed to have a better functionality.

However, the focus was held in the process of selecting
the path to follow, which was held by the Reactive
Forwarding app, in the script ”ReactiveForwarding.java”. The
function ”Set Path getPaths(Topology topology, DeviceId
src, DeviceId dst)” returns a set of all the shortest paths,
precomputed in terms of hop-count, between the specified
source and destination devices, as stated in the script
”TopologyService.java”.

Different functions to get the shortest paths were studied
to see if it could mean an improvement to the controller,
although it was not possible to make them compatible with
the Reactive Forwarding app, as it will be explained in the
following points:

• The k-shortest path is already implemented in ONOS.
However, it gives a Stream of paths, and the Reactive
Forwarding application works with a Set of paths, giving
incompatibilities in some functions.

• Yen’s algorithm [7] is a modified version of the k-shortest
path. It works with graphs, and the Reactive Forwarding
app works with topologies, and its definition of basic
elements and their functions such as Paths or Links
are different, not being able to work together without a
complete transformation.

After that process, the function ”Path pickForwardPathIfPos-
sible(Set Path paths, PortNumber notToPort)” was changed.

Originally, it would pick a random path of the Set of
shortest paths which would not lead back to the specified
port of origin. That approach could be beneficial with less
time and less resources consumed to select the path to follow,
knowing that the chosen path would already be one of the
shorter ones from the ”getPath” function.

However, that function was modified to check all the paths
and keep the one with the lower cost, instantly returning a
direct path with cost 1.0 if found. That would make sure that
the shortest path in terms of cost was followed. The cost is
measured in the hops made of the APs that a package goes
through when going from a source to the destination. In the
Experimental Analysis section, the results and the impact in
that change will be discussed.

/ / S e l e c t s a p a t h from t h e g i v e n s e t t h a t does n o t
l e a d back t o t h e s p e c i f i e d p o r t i f p o s s i b l e .

p r i v a t e Pa t h p i c k F o r w a r d P a t h I f P o s s i b l e (Set<Path>
p a t h s , PortNumber n o t T o P o r t) {

Pa th b e s t P a t h = n u l l ;
f o r (Pa th p a t h : p a t h s) { / / goes t h r o u g h a l l t h e

p a t h s
i f (! p a t h . s r c () . p o r t () . e q u a l s (n o t T o P o r t)) {

i f ((b e s t P a t h == n u l l) | | (p a t h . c o s t ()<
b e s t P a t h . c o s t ())) {

b e s t P a t h = p a t h ;
i f (b e s t P a t h . c o s t () == 1 . 0) {
r e t u r n b e s t P a t h ;
}

}
}

}
r e t u r n b e s t P a t h ;

}

/∗ p r i v a t e Pa t h p i c k F o r w a r d P a t h I f P o s s i b l e (Set<
Path> p a t h s , PortNumber n o t T o P o r t) {

f o r (Pa th p a t h : p a t h s) {
i f (! p a t h . s r c () . p o r t () . e q u a l s (n o t T o P o r t)) {

r e t u r n p a t h ;
}

}
r e t u r n n u l l ;

} ∗ /

Listing 1. Modified Java code in the upper part vs original code in the
commented lower section

In order to get relevant results, a realistic topology structure
was created. The wireless dynamic topology was based on the
University of Florida’s campus. UF’s campus has an area of
8km, and around 52000 students registered; from which not all
of them would be connected to the campus network at once. In
2012, there were 1700 Access Points 802.11n, which have a
range of 820 meters. [8] However, due to hardware limitations,
simulating a topology with that amount of components was not
possible, and the numbers had to be measured down. After
tests with different number of elements, the biggest topology
that the testing machine could simulate and handle had 15 APs
with a range of 200m, 40 hosts, and an area of 1.96km2.
The range and area were kept approximately with the same
ratio as the UF’s campus has, and a higher ratio of APs per host
was chosen since the following tests and simulations would be
made to observe the cost of the paths that would be chosen
when sending packages from host to host. The velocity of the
movement of the APs and hosts positions was set between 0.5
and 5 m/sec and the original seed was 3.

Regarding the APs connections, a tree topology was chosen.
[9] Campus Area Networks are generally based on a tree
topology, which is a hybrid topology between the star and
the bus topology. It is a more flexible and scalable network
since new ”branches” and APs can be added or modified easily,
with a point to point connection and featuring a centralized
monitoring with easier maintenance and fault finding. It is
ideal for a large network such as the campus of a university.
However, it needs a lot of maintenance and the backbone (or
main AP) forms a point of failure.

Fig. 4. Representation of a 15 AP tree topology

Fig. 5. Representation of the dynamic tree topology from the ONOS GUI

IV. EXPERIMENTAL ANALYSIS

All the experiments were run in an Ubuntu Virtual Machine
with 8GB of RAM and 2CPUs, in a computer with 16GB of
RAM and an Intel(R)Core(TM)i7-3520M CPU @ 2.90GHz.
The programs used were Mininet with its Mininet-WiFi exten-
sion to create the dynamic topology, ONOS to establish the
controller, Wireshark to capture the packets and evaluate the
data obtained, and HTOP to record the hardware’s usage.

The following test results were made with a dynamic
network of 15 APs in a tree structure topology, and with
40 host that will ping all with each other, as stated in the
Methodology section. It can be observed in Figures 4 and 5.

There were different results when tested in different
starting times, and each test would show different variations
of results and improvements. Nevertheless, some critical
analysis can show the contrast in using each version of the
algorithm. The packages delivered/lost had no noticeable
difference, but the cost of the followed paths showed a
differentiation.

As Table I shows, this algorithm change does not show
a significant amount of extra hardware usage. Those results
were obtained using HTOP, the ONOS GUI, and Wireshark,
which can sometimes saturate the system and be a reason of
why for example there is a 0.45GB difference in the RAM

Original Modified
Max. time to select a route 1ms 5ms

Average reactive processor p/sec 572.6 574.3
Max. CPU usage 84.4% 85.2%

Max. RAM memory 3.61GB 4.06GB
TABLE I

DATA COMPARISON DURING THE FINAL EXPERIMENT.

Original Modified
Cost = 1.0 10% 13%
Cost = 2.0 34% 42%
Cost = 3.0 34% 25%
Cost = 4.0 10% 12%
Cost = 5.0 12% 8%

TABLE II
PATH COSTS DURING THE FINAL EXPERIMENT.

memory usage. The time to select a package was mostly
at very low values. However, in very rare occasions, that
time was increased to higher values such as 15 ms in both
versions. Since the process in selecting a path is more complex
in the newer version, it is expected to have a very few
extra milliseconds in selecting the shortest path. That slight
difference did not make any noticeable impact in the amount
of delivered packages. Nevertheless, this algorithm should be
tested with a bigger network to see how it would affect a
bigger scale network such as the campus of a university.

Table II shows the main difference when changing the
algorithm. As stated previously, the contrast can be stronger
or lighter depending on the topology and its current state.
From this particular example, it can be perceived that there
were numerous cases in which there was only one possible
path to follow, and some other situations in which the original
random algorithm chose the best possible path. However, it is
noticed that there is a major improvement in the path costs,
with major differences specially in the paths with 2 hops,
focusing most of the weight of the network in shorter and
faster paths.

With all this data, depending on the speed of the network, this
could mean a major improvement in the QoS of a network.

On a very fast optimized network that prioritizes sending
the data as soon as it gets received, a few extra milliseconds
in selecting a path to only loose a smaller time from using a
shorter path, could lead into a slight increase in the network
latency, making the network slower. This case could apply to
wired networks which have a latency of less than 1 ms and
specially on fiber optics; which latency is 4.9 microseconds
(4.9*10−3 ms) per kilometer.[10]

However, when the network relies more on what path to
choose from, this algorithm could make a major improvement.
On WiFi (wireless fidelity) based networks, if the network
is running optimally, it would take about 1-4 ms per AP to
go through for just a ping. In this scenario, going through
the path with less APs hop count would make a major
improvement.[11]

Another feature that could be useful would be to have
a whitelist/blacklist system to choose from paths that are
already known to be reliable and efficient and discard the
ones that frequently experience failures or slower speeds.
That feature was not added to this project due to the nature
of a dynamic network, having all the APs and hosts changing
position, having situations in which paths from those lists
could not exist anymore. If the APs did not change much or
if they were static, that system could be a great addition for
a future project.

V. CONCLUSION

In this paper, it has been discussed how a combination
of the reactive forwarding app and the segment routing app
could build a great ONOS controller for a wireless dynamic
Software Defined Network. A new process in selecting the
path to follow from the reactive forwarding app is proposed,
to choose the path with the least AP hops.

Future works in this topic could test the built controller
with the new code in a bigger network to experience more
noticeable differences. An implementation of a k-shortest path
type algorithm to make the selection of shortest paths, and an
implementation of a whitelist/blacklist system, could be future
approaches to improve this ONOS controller.

REFERENCES

[1] Yuanguo Bi, Guangjie Han, Chuan Lin, Yan Peng,
Huayan Pu and Yazhou Jia, ”Intelligent Quality of Service
Aware Traffic Forwarding for Software-Defined Network-
ing/Open Shortest Path First Hybrid Industrial Internet”, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL.
16, NO. 2, FEBRUARY 2020

[2] Allen Starke, Zixiang Nie, Morgan Hodges, Corey Baker
and Janise McNair, ”Denial of Service Detection Mitiga-
tion Scheme using Responsive Autonomic Virtual Networks
(RAvN)”, IEEE Military Communications Conference (MIL-
COM), November 2019

[3] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur
Chouhan, Barbara Fraser, David Lake, Jim Finnegan, Niel
Viljoen, Marc Miller and Navneet Rao, ”Are We Ready for
SDN?Implementation Challenges for Software-Defined Net-
works”, IEEE Communications Magazine • July 2013

[4] ONOS https://wiki.onosproject.org/display/ONOS/
ONOS

[5] ”Segment Routing 101 and the Future of MPLS”
https://aviatnetworks.com/blog/segment-routing-101-and-the-
future-of-mpls/

[6] Mininet http://mininet.org/
[7] Yen’s algorithm https://github.com/bsmock/k-shortest-

paths/blob/master/edu/ufl/cise/bsmock/graph/ksp/Yen.java
[8] UF campus wireless network https://net-services.ufl.edu/

provided-services/wireless/
[9] Campus Topology https://www.conceptdraw.com/examples/

what-kind-of-topology-used-in-college
[10] Latency https://whatis.techtarget.com/definition/latency

[11] The latency of a wifi network
https://www.quora.com/What-is-the-average-latency-of-a-
WiFi-network

Bibliography

[1] “[Yuanguo Bi, Guangjie Han, Chuan Lin, Yan Peng, Huayan Pu and Yazhou
Jia] Intelligent Quality of Service Aware Traffic Forwarding for Software-
Defined Networking/Open Shortest Path First Hybrid Industrial Internet”.
In: IEEE Transactions on Industrial Informatics 16.2 (February 2020).

[2] software-defined networking (SDN). url: https : / / searchnetworking .

techtarget.com/definition/software-defined-networking-SDN.

[3] “[Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara
Fraser, David Lake, Jim Finnegan, Niel Viljoen, Marc Miller and Navneet
Rao]Are We Ready for SDN? Implementation Challenges for Software-Defined
Networks”. In: IEEE Communications Magazine (July 2013).

[4] “[Allen Starke, Zixiang Nie, Morgan Hodges, Corey Bakerand Janise McNair]
Denial of Service DetectionMitiga-tion Scheme using Responsive Autonomic
Virtual Networks(RAvN)”. In: IEEE Military Communications Conference
(MIL-COM) (November 2019).

[5] QoS (quality of service). url: https://searchunifiedcommunications.
techtarget.com/definition/QoS-Quality-of-Service.

[6] What is a virtual machine? url: https://www.redhat.com/en/topics/
virtualization/what-is-a-virtual-machine.

[7] Defining the terms driver, firmware, hardware, software, and utility. url:
https://kb.netgear.com/1070/Defining-the-terms-driver-firmware-

hardware-software-and-utility.

[8] Whitelist and Blacklist Overview. url: https://www.juniper.net/documentation/
en_US/release-independent/sky-atp/help/information-products/

pathway-pages/topic-98706.html.

[9] Ping. url: https://searchnetworking.techtarget.com/definition/
ping.

[10] ONOS. url: https://wiki.onosproject.org/display/ONOS/.

[11] Mininet. url: http://mininet.org/.

45

https://searchnetworking.techtarget.com/definition/software-defined-networking-SDN
https://searchnetworking.techtarget.com/definition/software-defined-networking-SDN
https://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service
https://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://kb.netgear.com/1070/Defining-the-terms-driver-firmware-hardware-software-and-utility
https://kb.netgear.com/1070/Defining-the-terms-driver-firmware-hardware-software-and-utility
https://www.juniper.net/documentation/en_US/release-independent/sky-atp/help/information-products/pathway-pages/topic-98706.html
https://www.juniper.net/documentation/en_US/release-independent/sky-atp/help/information-products/pathway-pages/topic-98706.html
https://www.juniper.net/documentation/en_US/release-independent/sky-atp/help/information-products/pathway-pages/topic-98706.html
https://searchnetworking.techtarget.com/definition/ping
https://searchnetworking.techtarget.com/definition/ping
https://wiki.onosproject.org/display/ONOS/
http://mininet.org/

BIBLIOGRAPHY

[12] Segment Routing 101 and the Future of MPLS. url: https://aviatnetworks.
com/blog/segment-routing-101-and-the-future-of-mpls/.

[13] Yen’s algorithm. url: https://github.com/bsmock/k-shortest-paths/
blob/master/edu/ufl/cise/bsmock/graph/ksp/Yen.java.

[14] UF campus wireless network. url: https://net- services.ufl.edu/

provided-services/wireless/.

[15] Campus Topology. url: https://www.conceptdraw.com/examples/what-
kind-of-topology-used-in-college.

[16] Latency. url: https://whatis.techtarget.com/definition/latency.

[17] The latency of a WiFi network. url: https://www.quora.com/What-is-
the-average-latency-of-a-WiFi-network.

46

https://aviatnetworks.com/blog/segment-routing-101-and-the-future-of-mpls/
https://aviatnetworks.com/blog/segment-routing-101-and-the-future-of-mpls/
https://github.com/bsmock/k-shortest-paths/blob/master/edu/ufl/cise/bsmock/graph/ksp/Yen.java
https://github.com/bsmock/k-shortest-paths/blob/master/edu/ufl/cise/bsmock/graph/ksp/Yen.java
https://net-services.ufl.edu/provided-services/wireless/
https://net-services.ufl.edu/provided-services/wireless/
https://www.conceptdraw.com/examples/what-kind-of-topology-used-in-college
https://www.conceptdraw.com/examples/what-kind-of-topology-used-in-college
https://whatis.techtarget.com/definition/latency
https://www.quora.com/What-is-the-average-latency-of-a-WiFi-network
https://www.quora.com/What-is-the-average-latency-of-a-WiFi-network

	Introduction
	Defining SDN and its current state
	Objectives of the project
	Motivation

	Background Information
	Quality of Service
	Other definitions

	The ONOS Controller
	Open-Flow

	Mininet-WiFi
	Resources

	Development guides
	Installation guide
	Building the system

	Methodology
	Selecting the ONOS applications
	Reactive Forwarding: The forwarding application
	Segment Routing: A great addition.
	App comparison

	Reactive forwarding modification
	Finding the appropriate network for the final testings

	Experimental Analysis
	Conclusion
	Future works
	Sustainable Development Goals of the project
	Scientific paper
	Bibliography

