

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Circuitos Microelectrónicos II	
Código	DEA-GITI-443	
Título	<u>Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia</u> <u>Comillas</u>	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Cuarto Curso]	
Nivel	Reglada Grado Europeo Semestral 4,5 ECTS	
Cuatrimestre		
Créditos		
Carácter	Optativa (Grado)	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Responsable	Clara Hernández González	

Datos del profesorado		
Profesor		
Nombre Clara Hernández González		
Departamento / Área Departamento de Electrónica, Automática y Comunicaciones		
Correo electrónico chgonzalez@icai.comillas.edu		
Profesores de laboratorio		
Profesor		
Nombre Raul Robledo Cabezuela		
Departamento / Área Departamento de Ingeniería Eléctrica		
Correo electrónico rrobledo@comillas.edu		

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Este es un curso avanzado de electrónica analógica, continuación de la asignatura Circuito Microelectrónicos I del primer cuatrimestre del 4º curso. El objetivo fundamental de este curso es el estudio de circuitos electrónicos para el tratamiento de señales analógicas.

En este curso nos proponemos diseñar circuitos electrónicos complejos, mediante la interconexión de distintas etapas básicas. El diseño de este tipo de circuitos permitirá familiarizarnos con los procedimientos básicos del diseño de sistemas electrónicos, las técnicas habituales de medida, y los fundamentos teóricos

GUÍA DOCENTE 2020 - 2021

estudiados en clase.

Prerequisitos

Conocimientos intermedio de electrónica (Contenido de las asignaturas de Electrónica de 2º curso y de Circuitos Microelectrónicos I de 4º curso).

Compete	Competencias - Objetivos			
Competencias				
GENERALES				
CG01 Capacidad para el desarrollo de proyectos en el ámbito de la Ingeniería Industrial. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendiz nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.				
		CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.	
ESPECÍFICAS				
CEN02 Conocimiento de los fundamentos y aplicaciones de la electrónica analógica.				
CEN05	Conocimiento aplicado de instrumentación electrónica.			
CEN06 Capacidad para diseñar sistemas electrónicos analógicos, digitales y de potencia.				

Resultado	dos de Aprendizaje		
RA1	Conocer el concepto de filtro y saber diseñar filtros activos estándar		
RA2	Analizar y diseñar osciladores lineales y no lineales.		
RA3 Entender el concepto de conversión analógico-digital y digital-analógica, así con que la realizan. Conocer el concepto de ruido electró- nico y su efecto el previamente mencionados.			
RA4	Entender la clasificación de los diferentes tipos de sensores y saber diseñar circuitos de acondicionamiento apropiados para cada tipo de dispositivo, incluida la eventual etapa de conversión analógica-digital o digital-analógica.		
RA5	Diseñar circuitos electrónicos analógicos complejos, montarlos en laboratorio, comprobar su correcto funcionamiento y corregir fallos.		

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Teoría

Tema 1: Filtrado activo.

- 1.1 Conceptos de filtros.
- 1.2 Filtros estándar y sus parámetros.
- 1.3 Implementación de filtros por medio de amplificadores operacionales y circuitos pasivos.

Tema 2: Osciladores lineales y no lineales.

- 2.1 Concepto de oscilador lineal.
- 2.2 Tipos de osciladores lineales; algunos ejemplos (phase shift, Colpittz, etc.).
- 2.3 Trigger de Schmidt y osciladores no lineales (de relajación).

Tema 3: Conversión analógico digital.

- 3.1 Definición de los parámetros de los conversores AD y DA
- 3.2 Estructura de los principales tipos de conversores, prestaciones y comparación.

Tema 4: Ruido electrónico.

- 4.1 Definición de ruido y fuentes de ruido electrónico: Johnson, shot y flicker.
- 4.2 Cálculo básico de ruido.
- 4.3 Ruido en la conversión ADC y DAC; bits efectivos.

Tema 5: Instrumentación electrónica.

- 5.1 Concepto de acondicionamiento de sensores.
- 5.2 Especificaciones de instrumentación: errores, curvas de calibración.

Laboratorio

Las prácticas están orientadas a desarrollar un proyecto, donde el trabajo en equipo, la organización, la creatividad y la iniciativa cobran especial importancia.

En el laboratorio habrá dos tipos de prácticas: la primera parte, durante aproximadamente la primera mitad del curso, se propondrán a los alumnos (en grupos de dos) prácticas guiadas proporcionadas por el profesor. En esta fase se estimulará la independencia en el trabajo, la capacidad de planificar la tarea en la fase

GUÍA DOCENTE 2020 - 2021

previa, y la capacidad de explicar de forma resumida los resultados obtenidos.

La segunda parte del laboratorio consistirá en proyectos de mayor envergadura, normalmente propuestos por los alumnos, que requieran la interacción de dos o más grupos para ser llevado a cabo. Se estimulará la capacidad de coordinación, de intercambio de especificaciones técnicas, de planificación y de respeto de los tiempos de desarrollo previstos.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

La asignatura tienes clases teóricas y de laboratorio

Metodología Presencial: Actividades

Presentación de conceptos básicos. El profesor introduce en un concepto o aplicación básica.

CG03, CEN02, CEN05, CEN06

Problemas de clase. Los alumnos dedican varios minutos a intentar entender y a hacer el problema asignado que trata el concepto explicado por el profesor. Por último, el profesor discute su solución.

CG01, CG04, CEN02

Prácticas de laboratorio. En los laboratorios, los alumnos realizarán proyectos (guiados al principio, más libres en adelante); tendrán que diseñar circuitos, montarlos, comprobar el funcionamiento y buscar y corregir fallos.

CG01, CEN05, CEN06

Metodología No presencial: Actividades

Repasar los conceptos de clase. Esto se hace terminando los problemas de clase, que obligará a repasar los conceptos presentados por el profesor.

CG03, CEN02, CEN06

Estudio personal. El alumno usará los recursos a disposición para profundizar los temas vistos en las clases, tanto teóricas como de laboratorio.

CG03, CEN02, CEN05, CEN06

Tareas. Se asignarán problemas que se discutirán en clase la semana siguiente. Estos problemas presentan cuestiones relacionadas con los conceptos trabajados en clase o de preparación de las prácticas de laboratorio.

CG01, CG04, CEN05, CEN06

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES		
Clase magistral y presentaciones generales	Resolución de problemas de carácter	Prácticas de

	practico o aplicado	laboratorio
15.00	15.00	15.00
HORAS NO	PRESENCIALES	
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio
15.00	45.00	30.00
CRÉDITOS ECTS: 4,5 (135,00 horas		

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
Examen Final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita 	45
Evaluación de trabajo experimental: • Trabajo de laboratorio	 Se valorará el trabajo previo a las prácticas, el comportamiento del alumno durante las prácticas y los informes técnicos cuando proceda 	35
Tests en clase y examen intersemestral	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita 	20

Calificaciones

Convocatoria Ordinaria

- Evaluación continua. Tiene un 20% del peso de la nota; hasta un 10% en los tests.
- Examen final. Tiene un 45% de peso en la nota. Es necesario obtener un mínimo de 4 en este examen para aprobar la asignatura.
- Laboratorio. Tiene un 35% de peso en la nota.

El laboratorio y la teoría deben aprobarse de forma independiente. No hay convocatoria extraordinaria de laboratorio.

Convocatoria extraordinaria

 Nota = 60% nota del examen extraordinario + 15% nota evaluación continua + 25% nota del laboratorio

Solo se podrá presentar a la convocatoria extraordinaria quien haya aprobado el laboratorio.

Normas de asistencia

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio:

- En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.
- En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	
Preparación de las pruebas que se realizarán durante las horas de clase		Se avisará

GUÍA DOCENTE 2020 - 2021

Preparación del Examen Intersemestral	Semana 7	
Preparación del Examen Final	Finales de abril - mayo	
Desarrollo de los proyectos de laboratorios	Todo el curso	Se avisará

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Comer, Comer: "Advanced Electronic Circuit Design", John Wiley & Sons, 2002D.
- M.A. Pérez García et al, "Instrumentación Electrónica", Thomson, 2004

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

Cronograma

Semana 1

• Repaso de prerrequisitos. Conceptos de filtros

Semana 2

- Filtros; especificaciones e implementación (I)
- Laboratorio 1. Diseño y test de filtro.

Semana 3

• Filtros; especificaciones e implementación (II)

Semana 4

- Osciladores, definición y generalidades-
- Laboratorio 2: verificación del filtro. Entrega del informe #1

Semana 5

• Osciladores lineales (I).

Semana 6

- Osciladores lineales (II).
- Laboratorio 3: Oscilador lineal. Diseño e implementación.

Semana 7

• Examen intersemestral

Semana 8

- Osciladores no lineales (multivibrador).
- Laboratorio: Oscilador, prueba y evaluación. Entrega del informe #2.

Semana 9

• Conversión Analógico-Digital (I).

Semana 10

- Conversión analógico-digital (II) y digital-analógico.
- Laboratorio: Proyecto (1)

Semana 11

- Ruido electrónico (I)
- Ruido electrónico (II)

Semana 12

- Conceptos de Instrumentación (I). Acondicionamiento, características y especificaciones.
- Laboratorio: Proyecto (2)

Semana 13

- Conceptos de instrumentación (II). Errores.
- Laboratorio: Proyecto (3) Entrega del informe #3

Semana 14

• Repaso y consolidación.