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The effect of acute 
moderate‑intensity exercise 
on the serum and fecal 
metabolomes and the gut 
microbiota of cross‑country 
endurance athletes
Mariangela Tabone1,4, Carlo Bressa1,4, Jose Angel García‑Merino1, Diego Moreno‑Pérez2, 
Emeline Chu Van3, Florence A. Castelli3, François Fenaille3,5* & Mar Larrosa1,5*

Physical exercise can produce changes in the microbiota, conferring health benefits through 
mechanisms that are not fully understood. We sought to determine the changes driven by exercise 
on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and 
untargeted metabolomics. A total of 85 serum and 12 fecal metabolites and six bacterial taxa 
(Romboutsia, Escherichia coli TOP498, Ruminococcaceae UCG‑005, Blautia, Ruminiclostridium 9 
and Clostridium phoceensis) were modified following a controlled acute exercise session. Among 
the bacterial taxa, Ruminiclostridium 9 was the most influenced by fecal and serum metabolites, as 
revealed by linear multivariate regression analysis. Exercise significantly increased the fecal ammonia 
content. Functional analysis revealed that alanine, aspartate and glutamate metabolism and the 
arginine and aminoacyl‑tRNA biosynthesis pathways were the most relevant modified pathways 
in serum, whereas the phenylalanine, tyrosine and tryptophan biosynthesis pathway was the most 
relevant pathway modified in feces. Correlation analysis between fecal and serum metabolites 
suggested an exchange of metabolites between both compartments. Thus, the performance of a 
single exercise bout in cross‑country non‑professional athletes produces significant changes in the 
microbiota and in the serum and fecal metabolome, which may have health implications.

Physical exercise has numerous beneficial effects on  health1. One of the mechanisms by which exercise can exert 
these effects is through changes to the gut  microbiota2. While a clear effect of exercise on the gut microbiota 
has been demonstrated in animal  models3–5, there is less robust evidence from human studies likely because the 
performance of physical exercise is associated with different feeding behaviors and with a healthier diet, which 
is a confounding factor when assessing the response to  exercise6,7. Exercise is associated with an increase in the 
diversity of gut microbiota, including an increment in the number of health-promoting bacteria that produce 
short-chain fatty  acids8,9. Indeed, acute physical exercise induces a series of metabolic changes both systemically 
and locally in specific tissues that are characterized by marked shifts in metabolism and oxygen  consumption10, 
but its effects on the gut microbiota has not been studied in any great detail.

Advances in metabolomics have provided new opportunities for enriching our understanding of physical 
exercise-associated factors that stimulate metabolic  responses11,12. In this line, a recent study by Zhao et al. found 
that the composition and functionality of the gut microbiota, as measured by fecal metabolomics, changed 
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significantly in amateur runners after endurance exercise (completing a half marathon)13. The effect of an acute 
bout of exercise on the gut microbiota and its interaction with the serum and fecal metabolome has been scarcely 
investigated. We hypothesized that an acute exercise bout would impact on the serum and fecal metabolome and 
alter the gut microbiota. Here, using a combinatorial approach, we investigated serum and fecal metabolites and 
the microbiome in non-professional (cross-country) athletes before and after a session of moderate-intensity 
exercise to volitional exhaustion using untargeted metabolomics and 16S rRNA sequencing analysis, respectively. 
We also examined the potential associations between serum and fecal metabolites and the gut microbiota induced 
by exercise. This study is the first to our knowledge to reveal simultaneous changes in serum/fecal metabolic 
signatures and gut microbiota after a single acute bout of exercise.

Results
Characteristics of the study population, dietary habits and exercise performance. In total, 
40 male endurance cross-country runners completed the study. Participants’ characteristics including age, 
weight, body mass index (BMI), dietary habits and sports performance data obtained in the exercise session are 
described in Table 1. The exercise session consisted of a treadmill test and running 1 km at maximum speed (see 
“Material and methods”

Fecal pH and ammonia. Fecal pH and ammonia were determined in samples collected before and after the 
exercise session. No changes in pH (pre = 7.59 ± 0.48 post = 7.54 ± 0.39; p = 0.337) were detected after the exercise 
session, but the concentration of fecal ammonia was significantly greater post-exercise (pre = 13.46 ± 7.25 mmol/L; 
post = 16.08 ± 8.37 mmol/L; p < 0.023).

Metabolomic serum profile. Metabolomics analyses were performed using liquid chromatography cou-
pled to high-resolution mass spectrometry (LC-HRMS) with a combination of two complementary chromato-
graphic methods: reversed-phase chromatography (C18 chromatographic column [C18(+)] and Hydrophilic 
Interaction Liquid Chromatography [HILIC(−)], for the analysis of hydrophobic and polar metabolites in the 
positive and the negative ionization modes, respectively). Using an untargeted approach, we detected a total of 
3195 and 1600 metabolite features using C18(+) and HILIC(−) conditions, respectively. Among those metabolite 
features, 101 from the C18(+) and 159 from the HILIC(−) analysis accurately matched the mass and retention 
time of metabolites included in our chemical database (30 of which were common in both analyses). Differences 
between the two sampling times were investigated further using supervised partial least square discriminant 
analysis (PLS-DA). As shown in Fig. 1A,B, athletes’ samples before a session of acute exercise (T1) could be 
distinguished from those after a session of acute exercise (T2). The cross-validation parameters R2Y and Q2 
indicated the variance and the predictive ability of the model. Permutation tests (200 times) were conducted to 
assess the robustness of the PLS-DA model when using a small sample size (Fig. 1C,D). Whole serum metabo-
lomic profiles from both the negative and positive ionization modes following hierarchical clustering analysis are 
shown in Fig. 2A,B. Discriminant annotated metabolites between groups were ranked according to their variable 
importance in the projection (VIP) score, yielding a total of 31 features with a VIP score of > 1, including 13 
amino acids, 4 lipids, 5 organic acids, 3 aromatic heterocyclic compounds, 1 aliphatic heterocycle compound, 3 
aromatic heteropolycyclic compounds, and 2 nucleosides (Fig. 3A,B). Complementary to the panel of metabo-
lites identified from the multivariate model, univariate analysis was applied using pairwise comparisons (T1 vs 
T2) of individual metabolites (Wilcoxon p-values with Benjamini–Hochberg correction). Under these condi-
tions, up to 85 annotated metabolites were significantly different and were subjected to additional tandem mass 
spectrometry (MS/MS) experiments for identity confirmation (Supplementary Table S1). The 85 metabolites 
were then analyzed by MetaboAnalyst (with the KEGG  database14) to identify potential discriminately per-

Table 1.  Participant characteristics. VO2maxREL relative maximum oxygen consumption, MAS maximal aerobic 
speed, VT1 first ventilatory threshold, VT2 second ventilator threshold, t1km time to run 1 km. Values are the 
mean ± standard deviation.

Age (y) 35.79 ± 8.01

Weight (kg) 71.11 ± 8.24

Height (cm) 176.69 ± 6.01

BMI (kg/m2) 22.75 ± 2.12

VO2maxREL (mL/kg/min) 58.80 ± 3.24

VT1 (km/h) 13.28 ± 0.95

VT2 (km/h) 15.76 ± 1.01

MAS (km/h) 17.88 ± 1.25

t1km (min) 3.22 ± 0.26

Energy (kcal) 2229.32 ± 1118.74

Carbohydrates (% of energy) 45.41 ± 7.08

Proteins (% of energy) 19.18 ± 3.48

Lipids (% of energy) 35.17 ± 6.85
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turbed metabolic pathways before and after the session of acute exercise (T1 vs T2). Results showed that alanine, 
aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis and arginine biosynthesis were the three 
most significantly modified pathways (Fig. 4A, Supplementary Table S3).   

Metabolomic fecal profile. A similar experimental set-up was used for the fecal analysis. A total of 10,866 
and 6795 metabolite features were detected under C18(+) and HILIC(−) LC-HRMS conditions, respectively. 
Firstly, lists of 176 and 335 metabolite features were obtained following annotation with our chemical database 
and using the C18(+) and HILIC(−) datasets, respectively (88 of which were common). The score plot of the 
principal component analysis (PCA) and PLS-DA did not reveal any distinction, showing that the two groups 
did not cluster separately (data not shown). However, 50 annotated metabolites were significantly different when 
comparing T1 and T2 groups using univariate statistical analysis, and were further confirmed by MS/MS analy-
sis (Supplementary Table S2). Further correction of the p-values for multiple hypotheses using the Benjamini–
Hochberg method narrowed down this list to 12 relevant metabolites (Table  2). Additional information for 
each metabolite is shown in the supplementary material (Supplementary Fig. S1). Metabolic pathway analysis 
showed that the top 3 affected metabolic pathways after the acute exercise session were the aminoacyl-tRNA 
biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and the phenylalanine pathway (Fig. 4B, Sup-
plementary Table S4).

Changes originating in gut microbiota. Analysis of the gut microbiota before and after the acute exer-
cise session revealed no difference in the composition of the bacterial community, and no changes were observed 
in any of the determined parameters of β-diversity (Bray–Curtis distance, Jaccard index and weighted and 
unweighted Unifrac; data not shown). Regarding α-diversity, no changes were observed in any of the parameters 
analyzed (observed operational taxonomic units, evenness, Shannon index and Faith’s index) (Supplementary 

Figure 1.  Partial least square discriminant analysis (PLS-DA) of the metabolites in T1 (before exercise) 
and T2 (after exercise). The results are presented as principal component score plots, with each point in the 
plot representing an individual sample. (A,B) PLS-DA score plots obtained from LC-HRMS data in positive 
mode C18 and negative mode HILIC. (C,D) Statistical validation of the PLS-DA model (A,B), showing R2Y 
(pink dots) and the Q2 (light-blue dots) values from the permutated analysis (bottom left) lower than the 
corresponding original values (top right).
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Fig. S2). To evaluate changes in bacterial taxa, we use an exploratory analysis of the bacterial taxa volatility—an 
approach that uses machine-learning regressors to establish the important bacterial taxa that predict the T2. 
The accuracy obtained for our model was significant (Mean squared error = 0.3194; R2 = 0.392; p = 0.0071). The 
bacterial taxa and those with the higher cumulative average change between T1 and T2 identified by the volatil-
ity plot were used to test whether the relative abundances of these features were impacted by exercise using a 
linear mixed effects analysis, in which time was included as a forced predictor (fixed effect) and subject identifier 
as a random effect. Six bacterial taxa were identified as significantly differentially abundant between T1 and T2 
(Table 3). The exercise bout increased the abundance of Romboutsia genus, Ruminococcocaceae UCG-005, E. coli 
TOP498 and Blautia genus, and decreased the abundance of Ruminiclostridium 9 and Clostridium phoceensis.

Microbiota and metabolomic associations. To examine for correlations between the metabolites 
detected in serum and feces and the changes in the gut microbiota, we performed several correlation analyses 

Figure 2.  Hierarchical clustering heatmaps representing annotated serum metabolites significantly (p < 0.05) 
different between T1 and T2. (A) Metabolites obtained from HILIC(−) LC-HRMS analysis. (B) Metabolites 
obtained from C18(+) LC-HRMS analysis.
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of the differentially detected metabolites and the 6 bacterial taxa that varied in the gut microbiota. There was a 
high number of plasma and feces metabolites that were significantly associated (Fig. 5A); however, none of the 
associations was strong (with ρ coefficient above 0.7). The fecal metabolites glutamine and tryptophan showed 
the highest number of moderate associations with serum metabolites (Fig. 5A). Some of the moderate posi-
tive associations were found between the fecal metabolite glutamine and serum xanthosine, hypoxanthine and 
deoxyadenosine, serotonin, acetyl-carnitine, 21-deoxycortisol, kynurenic acid, lactic, malic and succinic acid 
and pantothenic-acid (Fig. 5A). Serum phenylalanine was positively associated with fecal serotonin, formyl-
methionine, alpha-methylhistamine and propionylcarnitine. Although some of the metabolites found in serum 
have a microbial origin, no clear associations between differential microbial taxa and serum metabolites were 
found. Correlation analysis between bacterial taxa and fecal metabolites showed 9 significant correlations, of 
which 5 were positive correlations between the Romboutsia genus and the metabolites S-ethyl-cysteine, methio-
nine, serine, phenylalanine and tryptophan, two positive correlations between the Ruminiclostridium 9 genus 
and serine and cinnamic acid, and two negative correlations between E. coli TOP498 and the metabolites serine 
S-ethyl-cysteine and 4-hydroxybenzyl alcohol (Fig. 5B).

Figure 3.  Variable important in projection (VIP) score from PLS-DA of serum metabolites. (A) VIP score 
from serum metabolites obtained in positive ionization mode. (B) VIP score of serum metabolites obtained in 
negative ionization mode.

Figure 4.  Summary of metabolic pathway enrichment analysis performed in MetaboAnalyst 4.0 using a panel 
of 85 metabolites found to be significantly altered by a session of acute exercise. All the matched pathways 
are displayed as circles. The node color is based on its p-value and the node radius is determined based on 
its pathway impact values. (A) Serum pathways modified by a session of acute exercise. (B) Fecal pathways 
modified by a session of acute exercise.
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Multivariate association with linear models (MaAsLin) analysis was performed to analyze the associations 
between fecal and serum metabolites and significantly changed fecal microbiota taxa. Results showed that the 
presence of Ruminiclostridium 9 was partly predicted by fecal phenylalanine, serum tryptophan and uric acid 
metabolites (positive association), and negatively associated with the presence of succinic acid and 21-deoxy-
cortisol serum metabolites (Table 4).

Discussion
We previously showed that the performance of physical exercise in compliance with World Health Organiza-
tion recommendations has a positive effect on the gut microbiota, increasing its diversity and complexity, and 
promoting the colonization of bacteria with potential health  benefits2,15. To study how physical exercise modifies 
the gut microbiota, we designed a laboratory-based, moderate-intense exercise study to simultaneously investi-
gate the potential changes that a single exercise bout induces in the serum and fecal metabolome and in the gut 
microbiota. During and immediately after exercise, there is a rapid upregulation of several metabolic pathways 
responsible for skeletal muscle substrate utilization, and a physiological response has been shown to occur in 
many  organs12,16. Some of these changes do not seem to be completely reversed, as several of these metabolites 
can be considered markers of fitness  status17. We conducted the present study with amateur athletes as it has been 
described that muscle signaling is more pronounced in trained people than in untrained  people18. Our results 
reveal the activation of various metabolic pathways by exercise performance until volitional exhaustion. We found 
an increase in carbohydrate metabolites (hexoses, among others) and myo-inositol, reflective of gluconeogenic 
influx, which is typically induced after an initial depletion of glucose and glycogen  stores19. Dysregulation of 
aminoacyl-tRNA biosynthesis reflects modifications in protein synthesis, with perturbations in proteinogenic 
amino acid levels. Consistent with a prior study using a maximal exercise cycling  test12, we detected a decrease in 
serum tryptophan levels associated with an increase in indolelactic acid, a metabolite of the tryptophan-indole 
 pathway20. Our results are also in accord with those reported after a single bout of endurance  exercise21, with a 
decrease in serum tryptophan and an increase in kynurenic acid, increasing the kynurenic/tryptophan ratio. As 
previously reported by Lewis et al.17, we detected an increase in the abundance of metabolites associated with 
purine metabolism, including inosine, xanthine and hypoxanthine and uric acid. Of interest, hypoxanthine 
and xanthine accumulation in blood was also recently reported in response to a session of acute  exercise22. The 
accumulation of intermediate metabolites of the tricarboxylic acid cycle, including aconitic acid, ketoglutaric 
acid, succinic acid, malic acid, citric acid and fumaric acid, and also lactic acid, was also evident, likely due to the 
activation of this pathway for ATP production, indicative of high energy demand. We also detected a slight but 
significant increase in hydroxybutyrate, a marker of ketone body production resulting from exhaustive exercise. 
Hydroxybutyrate is synthesized in the liver from fatty acids or ketogenic amino acids and can be used as an 

Table 2.  Annotated and top significant fecal metabolites.

LC-HRMS conditions Metabolite p-corrected value T1/T2

C18(+) Tryptophan 0.0212 0.58

C18(+) Methionine 0.0132 0.55

C18(+) S-ethyl-l-cysteine 0.0143 0.57

C18(+) Phenol 0.0145 0.63

C18(+) 4-Hydroxybenzyl-alcohol 0.0234 0.64

HILIC(−) l/d-Glutamine 0.0001 0.53

HILIC(−) Serine 0.0212 0.60

HILIC(−) Phenylalanine 0.0218 0.55

HILIC(−) Tyrosine 0.0224 0.60

HILIC(−) Hexose alcohols 0.0224 0.57

HILIC(−) Pyridoxamine 0.0426 1.66

HILIC(−) Cinnamic acid 0.0433 0.53

Table 3.  Linear mixed-effects model results for bacterial taxa abundances modified by an acute session of 
physical exercise. Parameter estimate (coefficient), standard error, Z-score, and P-value for each bacterial taxa. 
A positive coefficient indicates a higher relative abundance in T2.

Bacterial taxa Estimate SE Z-score P-value Identity Confidence

D_5__Romboutsia;D_6__uncultured bacterium 0.001 0.00 2.390 0.017 0.98558

D_5__Escherichia-Shigella;D_6__Escherichia coli TOP498 0.001 0.001 2.534 0.011 0.99624

D_5__Blautia;D_6__human gut metagenome 0.000 0.000 3.107 0.002 0.96172

D_5__Ruminococcaceae UCG-005;D_6__uncultured organism 0.001 0.000 2.063 0.039 0.99940

D_5__Ruminiclostridium9;D_6__uncultured Clostridia bacterium − 0.000 0.000 − 2.607 0.009 0.99772

D_5__uncultured;D_6__Clostridium phoceensis − 0.001 0.000 − 2.413 0.016 0.99705

Content courtesy of Springer Nature, terms of use apply. Rights reserved



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3558  | https://doi.org/10.1038/s41598-021-82947-1

www.nature.com/scientificreports/

energy source by peripheral tissues when blood glucose is  low23,24. The elevation of some acetylated amino acids 
and the decrease in pantothenic acid might also reflect an increased availability of acetyl-CoA by both pyruvate 
oxidation and beta-oxidation17,25. The involvement of the arginine biosynthesis pathway could be reflected by the 
observed decrease of spermidine and the increase of n(8)-acetylspermidine. Spermidine is a polyamine with anti-
inflammatory effects, and it has been shown to enhance cell and organ function through autophagy and improve 
the bioavailability of arginine (not significant in the present study) required for nitric oxide  biosynthesis26. The 
systemic levels of spermidine depend on oral intake, microbiota production and cellular  metabolism26, but to 
our knowledge, this is the first time that its levels have been associated with exercise performance.

Exercise also induced changes in the fecal metabolome and in the gut microbiota. Metabolomic analysis 
revealed that the most relevant changes were in phenylalanine, tyrosine and tryptophan metabolism, reflected by 
an increase in tryptophan, tyrosine and phenylalanine metabolites. These essential amino acids are synthesized 
by gut microbiota, as humans (all animals) lack the shikimic pathway. Our results are similar to those of Zhao 
et al. in a half marathon running study, in which an increase of the phenylalanine, tyrosine and tryptophan 
biosynthesis pathway was also  observed13. The analysis of the behavior of the microbiota regarding tryptophan 
synthesis during exercise is of great interest, as microbiota-contributed tryptophan in blood could counteract 

Figure 5.  Heatmaps showing significant statistical correlations values (r) between: (A) serum and fecal 
metabolites, and (B) microbial taxa and fecal metabolites. Significant correlations are marked with a cross 
(p-adjusted value < 0.05).

Table 4.  Regression analysis results using MaAsLin.

Bacterial taxa Metabolite Regression coefficient P-adj value

D_5__Ruminiclostridium9;D_6__uncultured Clostridia bacterium

Fecal phenylalanine 0.3472 0.0067

Serum tryptophan 0.4493 0.0003

Serum uric acid 0.36942 0.0019

Serum Succinic-acid − 0.2486 0.0387

Serum 21-Deoxycortisol − 0.4142 0.0387
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the decrease of tryptophan that is involved in the appearance of  fatigue27, decreasing the effect of kynurenine—
a metabolite that restricts exercise  capacity28 and also related to depression and  schizophrenia29. We detected 
kynurenine both in serum and feces, but it was not significantly modified by exercise in either compartment. 
While several studies have attempted to modify tryptophan levels in blood to delay central  fatigue30–32, to the 
best of our knowledge no microbiota-based strategy has been proposed to increase circulating tryptophan lev-
els. As mentioned, the microbiota plays an important role in tryptophan biosynthesis and catabolism. Because 
tryptophan is required for the survival of bacteria, they are able to synthesize this amino acid through a highly 
regulated tryptophan-biosynthesis operon, and the capacity of tryptophan synthesis is widely distributed in 
 bacteria33. Bacteria also participate in tryptophan catabolism, which is directly or indirectly involved in the 
three major tryptophan metabolism  pathways20. Furthermore, bacterial tryptophan metabolites influence host 
health, and contribute to the intestinal and systemic homeostasis in health and  disease34, and our study suggests 
a strong cross-talk between microbiota and systemic tryptophan metabolism. Fecal tryptophan levels correlated 
negatively with the presence of E. coli TOP498 and positively with the presence of the Romboutsia genus. Also, 
we found changes in the abundance of E. coli and several bacterial taxa (Romboutsia, Ruminococcocaceae UCG-
005, Blautia, Ruminiclostridium 9 and Clostridium phoceensis) belonging to the Clostridia class, which possess 
tryptophan synthesis  machinery33.

We detected an increase in fecal ammonia after the exercise bout, which could be related to the metabolism 
of urea and glutamine that can occur during exercise, as both metabolites are physiological markers of exercise 
 performance35. The main sources of ammonia in the gastrointestinal tract are from urea degradation and glu-
tamine metabolism, and from dietary  proteins36. Urea produced during exercise can permeate the intestinal tract 
and serve as a fuel for bacteria, enabling the growth of urease-containing  bacteria36. The transfer of metabolites 
produced during exercise from the blood to the gastrointestinal system could be a mechanism by which exercise 
induces changes in the microbiota, as some of the bacteria detected in this study including Romboutsia, Rumino-
coccus and Clostridium exhibit urease  activity37,38. In fact, a recent study demonstrated that the lactate produced 
during exercise can increase the abundance of the Veillonella genus in gut  microbiota39.

The present study has some limitations that should be considered. The time of collection of the stool samples 
was not concurrent with the collection of serum samples. The timing for serum collection between T1 and T2 was 
clearly established; however, the collection of the stool samples was not as precise, although we limited the time 
to 4 h to avoid any other external influence. This could account for the lack of correlation between differential 
microbial taxa and serum metabolites.

In conclusion, we provide evidence that a single bout of acute physical exercise in amateur athletes triggers 
changes in serum and fecal metabolism and also in gut microbiota. The changes we have seen in the micro-
biota are subtle, as they have only been produced by an exercise bout. Despite being highly trained individuals 
the exercise they performed was very intense for them, reaching exhaustion, which can clearly be seen in the 
metabolomics approach. Further research is needed to better understand the interaction between the human 
body and the trillions of bacteria that inhabit it, as well as the changes induced by exercise on the gut microbiota 
and associated mechanisms. Exercise frequency, intensity, performing time, type of exercise, exercise volume 
and progression are all factors that influence physiological responses and exercise adaptations, and will need to 
be considered in future studies investigating the beneficial effect of exercise on the gut microbiota.

Materials and methods
Study design. The present study is a single-arm trial. Participants were recruited from different cross-
country athletes’ teams in Madrid, Spain. From the 68 participants screened, 40 male endurance cross-country 
athletes met the following inclusion criteria: 18–50 years of age, with a high physical condition (oxygen uptake 
 VO2 ≥ 55  mL/kg/min), and body mass index 18–25  kg/m2 and treadmill experience. Exclusion criteria were 
antibiotics intake during 3 months prior to the study, smoking, nutritional or ergogenic supplements, prebiotics, 
probiotics, be vegetarian or vegan, chronic medication, gastrointestinal surgery, or any diagnosed disease. Par-
ticipants were also excluded if they had any medical condition that could be exacerbated by exercise. The Ethics 
Committee for Clinical Research of the Community of Madrid Spain approved the study (Ref: 07/694487.9/17), 
and all procedures were in accordance with the 1964 Helsinki Declaration and its later amendments. Written 
informed consent was obtained from all the volunteers. The study was registered in Clinicaltrials.gov with the 
accession number NCT04244149.

Dietary habits. Dietary pattern characterization of the participants was carried out using a validated food 
frequency questionnaire with 93 food  items40 and three 24-h dietary recalls (two weekdays and one weekend 
day). Data from the questionnaires were analyzed using Dietsource software 3.0 (Novartis, Barcelona, Spain) to 
obtain the total energy ingested (in kcals) of proteins, fat, carbohydrates and fiber.

Exercise protocol. Body weight and height were measured with a scale and a height meter (Asimed T2, 
Barcelona, Spain). BMI was calculated by dividing the weight by the square of the height. Participants refrained 
from any physical activity 24 h before the day of the physical test. All participants performed a standardized 
10-min warm-up of continuous running on a treadmill (H/P/Cosmos Venus, Nussdorf-Traunstein, Germany) 
at 60% of their maximum heart rate. After the warm-up, they ran with a slope of 1% at a speed of 10 km/h, with 
increments of 0.3 km/h every 30 s until volitional exhaustion. Participants were verbally encouraged to give their 
maximal effort, particularly towards the end of the test. Oxygen consumption values were monitored during 
the test and the following variables were determined:  VO2, pulmonary ventilation, ventilatory equivalents for 
oxygen and carbon dioxide, and end-tidal partial pressure of oxygen and carbon dioxide. These variables were 
used to calculate absolute maximal oxygen consumption  (VO2maxABS), relative maximum oxygen consumption 

Content courtesy of Springer Nature, terms of use apply. Rights reserved



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3558  | https://doi.org/10.1038/s41598-021-82947-1

www.nature.com/scientificreports/

 (VO2maxREL), maximal aerobic speed, and first and second ventilatory thresholds. After the exercise test, the par-
ticipants performed a 1-km run on an athletics track at maximum speed. The time needed to complete the run 
was also measured.

Serum and stool sample collection. Venous blood samples were collected in vacutainer tubes imme-
diately before and within 15 min of finishing the exercise test (T1 and T2, respectively). Serum was obtained 
after clotting and centrifugation at 760×g for 10 min at 4 °C; aliquots were immediately frozen and stored at 
− 80 °C. Stool samples were collected just before and after the exercise session. Participants were provided with a 
Fe–col stool collection device, an insulated bag and ice blocks to preserve the samples until they were delivered 
to the laboratory. The first stool sample was collected early in the morning, before physical exercise. The second 
sample was collected within four hours post-exercise to avoid diet interference. Exercise promotes bowel transit 
and normally, participants feel the need to defecate soon after intense exercise. Those participants who did not 
produce a stool sample within four hours after exercise were excluded from the study. On arrival at the labora-
tory, the samples were maintained at − 80 °C until processing. Stool samples for metabolomics analysis were 
lyophilized using the TFD5503 Bench-Top freezedryer (ilShin Biobase, Ede, Netherlands) and stored at − 80 °C.

Chemicals and reagents. All analytical grade reference compounds were from the Sigma Chemical Co. 
(Saint Quentin Fallavier, France). The standard mixtures used for the external calibration of the mass spectrom-
etry (MS) instrument (Calmix-positive, for the positive ion mode, consisting of caffeine, l-methionyl-arginyl-
phenylalanyl-alanine acetate; and Ultramark 1621, and Calmix-negative, for the negative ion mode, consisting 
of the same mixture plus sodium dodecyl sulfate and sodium taurocholate) were from Thermo Fisher Scientific 
(Courtaboeuf, France). Acetonitrile was from SDS (Peypin, France), formic acid from Merck (Briare-le-Canal, 
France), methanol from VWR Chemicals (Fontenay-sous-Bois, France) and deionized water from Biosolve 
chemicals (Dieuse, France).

Metabolite extraction from stool and serum and analytical measurements. Approximately 
2 × 10 mg of lyophilized stool were weighed precisely in two distinct Precellys tubes (ref CK14-2 mL, Bertin 
Technologies, Montigny-le-Bretonneux, France), resuspended in 150 µL of pure water and thoroughly vortexed. 
Then, 600 µL of methanol were added. After vortexing, samples were lysed in a Precellys Device (Bertin Tech-
nologies) for 3 × 30 s at 6500 rpm and 4 °C, and were then left on ice for 90 min to facilitate complete protein 
precipitation.

Two 50-µL samples were withdrawn from each serum sample. Each sample was mixed with 200 µL of metha-
nol and incubated on ice for 90 min to achieve protein precipitation.

After centrifugation at 20,000g for 15 min at 4 °C, 200 µL of the supernatant were withdrawn and evaporated 
to dryness under a nitrogen stream at 30 °C using a Turbovap instrument (Caliper Life Science Inc., Roissy, 
France). The resulting dried extracts were stored at − 80 °C until analysis. Dried aliquots were resuspended in 
either 100 µL of water/acetonitrile (95:5, v/v) with 0.1% formic acid for C18 analysis or 100 µL of a mixture of 
10 mM ammonium carbonate buffer (pH 10.5) and acetonitrile (40:60) for ZIC-pHILIC analysis (see below). 
The tubes were then vortexed, incubated in an ultrasonic bath for 5 min, and centrifuged for a further 10 min. A 
volume of 95 μL of the supernatant was transferred to 0.2 mL-vials and mixed with 5 µL of a mixture of internal 
standards (13C-glucose, 15N-aspartate, ethylmalonic acid, amiloride, prednisone, metformin, atropine sulfate, 
colchicine, imipramine) in order to check for consistency of analytical results in terms of signal and retention 
time stability throughout the experiment. Quality control samples were obtained by pooling aliquots of each 
sample and these were injected every 5–10 samples throughout the analysis for further data normalization/
standardization.

Untargeted metabolomics experiments were performed by liquid chromatography coupled to high-resolution 
mass spectrometry (LC-HRMS) using a combination of two complementary chromatographic  methods41,42, 
consisting of reversed-phase chromatography (C18 chromatographic column) and hydrophilic interaction chro-
matography (HILIC) for the analysis of hydrophobic and polar metabolites, respectively. LC-HRMS experiments 
were conducted on an Ultimate 3000 chromatographic system (Thermo Fisher Scientific, Courtaboeuf, France) 
coupled to an Exactive mass spectrometer from Thermo Fisher Scientific fitted with an electrospray ionization 
source and operating in the positive and negative ion modes for C18 and HILIC separations, respectively (des-
ignated as C18(+) and HILIC(−), respectively). Metabolite separations were performed using a Hypersil GOLD 
C18 1.9 µm, 2.1 × 150 mm column maintained at 30 °C (Thermo Fisher Scientific) or a Sequant ZIC-pHILIC 
5 µm, 2.1 × 150 mm column at 15 °C (Merck, Darmstadt, Germany), operated under gradient elution conditions 
as  described41.

Metabolomic data processing, metabolite annotation and metabolic pathway analysis. The 
raw LC-HRMS data were first converted into mzXML files using MSConvert (ProteoWizard), and further data 
processing (e.g., normalization, scaling, filtering) and statistical treatments were performed using the Workflow-
4Metabolomics (W4M)  platform43. Metabolite annotation was first realized using our spectral database accord-
ing to accurately measured masses and chromatographic retention  times41. Our chemical database initially 
included ~ 1000 metabolites mainly of human origin, but was then broadened by the addition of commercially 
available bacterial metabolites and other molecules described in the  literature44,45. Confirmation of metabolite 
annotation was then accomplished by running additional LC–MS/MS experiments using a Dionex Ultimate 
chromatographic system combined with a Q-Exactive mass spectrometer (Thermo Fisher Scientific) under non-
resonant collision-induced dissociation conditions using higher-energy C-trap dissociation. Obtained MS/MS 
spectra were both manually and automatically matched using MS-DIAL  software46 to the spectra included in our 
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in-house spectral database, as  described47. To be identified, ions had to match at least 2 orthogonal criteria (accu-
rately measured mass, isotopic pattern, MS/MS spectrum and retention time) to those of an authentic chemical 
standard analyzed under the same analytical conditions, as proposed by the Metabolomics Standards  Initiative48. 
The identified metabolites were imported into the free online web-based platform MetaboAnalyst 4.049 for meta-
bolic pathway enrichment. Thus, the annotated m/z features with a Wilcoxon p-value < 0.005 (BH-critical value) 
were imported as KEGG numbers using the appropriate Homo sapiens pathway library. The interpretation of the 
results was performed after considering data with a p-value < 0.05 and an impact value > 0.1.

pH and ammonia determination in stool samples. The pH was measured using a basic pH meter 
(Crisom, Hach Lange, Barcelona, Spain) according to the method described by Dai and  Karring50. Ammonia 
content was determined using a high-performance ammonia-selective ion electrode (Orion, Thermofisher Sci-
entific, Waltham, MA). Stool (100 mg) was dissolved in 5 mL of MilliQ water; the mixture was vortexed for 
2 min and then sonicated (Ultrasons, Selecta, Barcelona, Spain) for 10 min. A volume of 100 µL 1 M NaOH was 
added to the sample and ammonia was immediately measured. A standard curve was made from serial dilutions 
of ammonium chloride from 0.1 M, according to the manufacturer’s instructions.

Bacterial DNA extraction and bioinformatics. Bacterial DNA was extracted using the E.Z.N.A. Kit 
(Omega-Biotek, Norcross, GA) and a bead homogenizer (Bullet Blender Storm, Next Advance, Averill Park, 
NY). A DNA fragment comprising the V3 and V4 hypervariable regions of the 16 s rRNA gene was amplified 
for sequencing  analysis6. Amplicons were sequenced on the MiSeq Illumina platform (Illumina, San Diego, 
CA). Sequence results were analyzed using Quantitative Insights into Microbial Ecology (QIIME2) v2019.751 
and were processed with DADA2 for quality  control52. The classify-sklearn method was used for taxonomy 
 assignment53 with an in-house customized classifier based on the SILVA reference  database54,55. To construct the 
customized reference database, we extracted the sequences according to our primers (forward primer sequence: 
CCT ACG GGNGGC WGC AG, reverse primer sequence: GAC TAC HVGGG TAT CTA ATC C) from the SILVA 
132 database clustered at 99%  identity56. We trained the classifier using our tailored reference reads and SILVA 
7-levels for reference taxonomy, including the species probability (weights) likely to be observed for human stool 
(downloaded from https ://githu b.com/BenKa ehler /ready towea r)56,57.

Statistical analysis. For metabolomics data, multivariate analyses were used to identify molecular features 
that discriminate metabolite differences in athletes before and after a session of acute exercise. PCA and PLS-
DA were performed using the W4M platform and were used to identify features with discriminative power and 
to maximize variation between the two groups (before and after the test). Also, permutation tests (200 cycles) 
were conducted to assess the robustness of the PLS-DA model when using a small sample  size58. The signifi-
cance of the discriminant metabolites from the two groups was defined by a statistically significant threshold 
of VIP, which was derived from the PLS-DA model. A value of VIP > 1.0 was considered sufficient for group 
 discrimination59. The univariate data analyses included a Wilcoxon signed-rank test, corrected for multiple test-
ing by the Benjamini–Hochberg procedure, to assess the statistical significance of each compound. The genera-
tion of the clustered heatmap was performed using the Canberra distance metric and normalizing data, adding 
a pseudocount of 1 before log10 conversion. To detect changes in microbiota, samples in T1 and T2 were com-
pared using the q2-longitudinal  method60. First, a feature volatility analysis was performed to explore the data. 
This type of analysis uses a supervised learning regressor to predict a continuous variable (time in this case) as 
a function of feature composition (bacterial taxa). Based on volatility analysis, some bacterial taxa were selected 
for subsequent analyses according to their importance and cumulative average change. Selected taxa were ana-
lyzed using a linear mixed-effects model to detect significant bacterial taxa. Associations between different vari-
ables were studied with Spearman´s correlation and multivariate association by linear models (MaAsLin), an 
additive general linear model to find associations between metadata and bacterial  abundance61. The cumulative 
sum scaling normalization was used. All p-values were corrected for multiple testing using the Benjamini–
Hochberg false discovery rate.

Data availability
The 16S rRNA dataset generated during the present study has been submitted to the NCBI Biosample database, 
https ://submi t.ncbi.nlm.nih.gov/subs/sra/SUB77 80980 /overv iew and will be available upon publication.
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