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Abstract: The increasing penetration of renewable electricity generation is complicating the bidding 
and estimating processes of electricity prices, partly due to the shift of the overall cost sensitivity 
from operation (fuel) costs to investment costs. However, cost minimization models for capacity 
expansion are frequently based on the principle that, for a perfectly adapted system allowing non-
served energy, marginal remuneration allows overall operation and investments costs recovery. In 
addition, these models are usually formulated as finite-horizon problems when they should be the-
oretically solved for infinite horizons under the assumption of companies’ infinite lifespan, but in-
finite horizon cannot be dealt with mathematical programming since it requires finite sets. Previous 
approaches have tried to overcome this drawback with finite horizon models that tend asymptoti-
cally to the original infinite ones and, in many cases, the investment costs are annualized based on 
the plants’ lifespan, sometimes including a cost residual value. This paper proposes a novel ap-
proach with a finite horizon that guarantees the investment costs’ recovery. It is also able to obtain 
the marginal electricity costs of the original infinite horizon model, without the need for residual 
values or non-served energy. This new approach is especially suited for long-term electricity pricing 
with investments in renewable assets when non-served demand is banned or when no explicit ca-
pacity remuneration mechanisms are considered. 
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1. Introduction 
1.1. Problem Description 

In 2030, half of the EU’s electricity demand will most likely be met with renewable 
energy sources, and by 2050 the power sector will have to be almost fully renewable. Clas-
sical marginalist theory [1] states that assuming: (1) marginal cost pricing based on short-
term marginal production costs; (2) a perfectly adapted system; (3) a set of technologies 
available for investments; and (4) a cost for the non-supplied energy, the overall cost (in-
vestment plus operational costs) is recovered for all technologies. However, this theory 
requires the existence of unsupplied demand at certain peak hours with very high prices, 
in order to allow marginal plants to recover their overall costs, which is unrealistic from 
a practical point of view in many power systems in developed countries. Moreover, cur-
rent market mechanisms based on the marginalist theory could not provide adequate eco-
nomic signals for investment, especially in systems with a high share of renewables. 
Therefore, remuneration mechanisms for generation, based only on short-term variable 
costs could imperil the 2050 EU objectives. Indeed, in practice, null variable costs of re-
newables lead to close-to-zero prices, making it more difficult to recover their full costs, 
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thus compromising not only their profitability but also the economic viability of other 
backup technologies needed to meet demand in the absence of wind and sun and to pro-
vide regulation reserves. Additionally, the integration of renewable installations might 
lead to systems that suffer from an effect of profitability-loss cannibalization, since the 
higher the renewable production, the lower the market incomes received by all generation 
assets [2]. 

In this context, well-designed capacity remuneration mechanisms may overcome this 
problem, as capacity pricing can establish the amount of firm capacity that can be pro-
vided by each technology, being an essential tool for cost-effective capacity investments. 
The absence of these mechanisms may discourage capacity providers from investing in 
new generation capacity, putting at risk supply security. 

This paper analyzes the problem of investment cost recovery in a power system with 
a large penetration of renewables without the existence of an explicit capacity remunera-
tion mechanism. This is a critical problem for future fully renewable systems even with a 
capacity remuneration mechanism since, as discussed in [3], renewable generation has so 
far had very limited participation in capacity mechanisms.  

1.2. State of the Art 
Generation expansion studies used to analyze the problem of cost recovery in the 

absence of explicit capacity mechanisms are frequently based on the formulation of finite-
horizon mathematical programming (MP) problems, even knowing that finite horizons 
are not suitable in the long-term planning with infinite-life generation companies, [4]. Two 
main approaches to overcome this problem have been proposed in the literature on this 
topic, the static and the dynamic approaches [5]. 

1.2.1. The Static Approach 
This approach determines the optimal investment plant (OIP) for a single representa-

tive year in the future, dividing the investment costs by the lifespan of the generation 
assets. Classic works that use this approach are [6–10]. For example, static MP models 
including the network constraints are presented in [9,10]. A more recent static cost mini-
mization MP model including the network is described in [11], while [12,13] present static 
MP models for the analysis of the operating reserves and the carbon dioxide emissions, 
respectively. While it is useful in some situations for simplified studies, this single-year 
static approach may be misleading in the current context of the rapid development of re-
newable energy technologies, as their investment costs decrease on a yearly basis. Static 
analyses provide very vague results regarding the year in which investments should be 
made since they do not provide insights on how electricity prices could evolve annually. 

1.2.2. The Dynamic Approach 
Unlike the static approach, the dynamic approach computes the OIP for a multi-year 

finite horizon. A residual value modeling the costs for the years beyond the finite horizon 
is usually included indefinitely replicating the cost of the last year of the horizon [14]. A 
residual value is alternatively considered in [15], which uses the resale value of the gen-
eration assets at the end of the study year. However, residual values may be volatile and 
complex to compute when considering a company with a big market share. Moreover, the 
replication may lead to inaccurate results, for example, if investment costs decrease sig-
nificantly over time, as commonly happens with renewable technologies. Some other 
works such as [16–19], do not represent residual values, assuming that they can be disre-
garded under some circumstances such as, for example, for long finite horizons and/or 
high discount rate values. 

Most of the above works distribute overall costs over the years by applying a partic-
ular annualization of these costs and allocating them based on the generation assets’ 
lifespan. The most classical annualization of costs is based on the capital recovery factor. 
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For example, in [20] a capital recovery annualization is applied to reduce renewable en-
ergy curtailment by improving the accommodation of this generation taking into account 
short-term operation constraints and uncertainties from the load and renewable energy 
sources. 
1.3. Contributions of the Proposed Dynamic Approach 

This paper overcomes some of the limitations of the abovementioned approaches by 
analyzing the problem of determining the long-term marginal costs (hereinafter termed 
electricity prices, for simplicity’s sake) in order to guarantee the recovering of the invest-
ment costs of renewable technologies. It applies a dynamic approach, more suitable than 
the described static ones, in the absence of an explicit capacity mechanism, and when non-
served demand is not allowed. Unlike the dynamic approaches presented in the literature, 
this research: 
• Focuses on the long-term recovering electricity prices (understood as those that, un-

der some assumptions, guarantee the recovery of the total costs of producing elec-
tricity), computed by the dual variables of the generation-demand balance con-
straints of the MP problems, instead of aiming at the primal variables to estimate the 
OIP as other approaches do (for instance [16–19]). 

• Assuming infinite-life generation companies, proposes a finite MP problem with a 
novel annualization of the investment costs which ensures that the electricity prices 
obtained from the finite problem are the same as those obtained using the corre-
sponding infinite model. As far as the authors know, previous works (for instance 
[15]) have not been able to ensure the fulfilment of this interesting and relevant prop-
erty. Hereinafter, when this happens, it will be said that the annualization method 
verifies the finite dual pricing (FDP) property. 
More specifically, if C∞ is the overall cost of the model for an OIP under an infinite 
horizon, this paper formulates a finite truncation C of C∞ using only p years such that 
the derivatives of C and C∞ with respect to the demand dp at any year p ≤ p (the dual 
variables of the generation-demand balance constraint) coincide. This paper also 
proves the well-known result that states that the straightforward truncation Cp of C∞ 
(i.e., solving the problem for a finite number of years without annualization) does not 
verify the FDP property and leads to large runtimes when demanding a reasonable 
approximation of C∞ by Cp. 

• Formulates, in order to deduce the annualization method, a stylized cost-minimiza-
tion MP problem with a finite horizon without the need of considering the above-
mentioned residual value that current dynamic approaches need (for instance [14] 
and [15]), which makes it easier both from a theoretical and practical point of view.  

• Significantly reduces the estimation time needed to reach reasonable approximations 
of the electricity prices relative to other dynamic approaches based on finite MP prob-
lems (for instance [21]), due to the contribution referred in the previous points. 

• Even if the annualization proposed guarantees the total cost recovery only under 
some assumptions (see Section 2), in view of the lack of methods that guarantee the 
FDP property, reasonable price estimations could be obtained even under more re-
laxed hypothesis. However, additional research is needed in this point. 
In short, this paper presents a relevant theoretical advance that allows simplifying an 

infinite OIP problem into a finite one to estimate long term electricity prices. This ap-
proach can be directly used from a practical point of view to estimate the total electricity 
price that guarantees investments’ recovery for the economic sustainability of the power 
sector. This result is useful both for the investment planning of the electricity companies 
and for the regulators assessment of current markets designs. 

This paper is structured as follows. The main assumptions that define the presented 
framework are described in the following section. Section 3 is devoted to analyzing the 
OIP and its sensitivity with respect to the demand. From this result, the marginal prices 
that guarantee the investment costs recovery are computed in Section 4, including and 
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excluding corporate taxes. Section 5 presents the annualized investment costs proposed 
in this paper and proves how it fulfils the FDP property. Conclusions and future develop-
ments are discussed in the final section. 

2. Main Assumptions 
The main assumptions of this paper are: (1) for simplicity’s sake, investments are 

made in renewable generation with null operational costs; (2) no capacity remuneration 
mechanisms are explicitly modeled nor needed; (3) no unsupplied demand is allowed, as 
occurs in many real systems; and (4) other remuneration mechanisms might not exist.  

The following modeling hypotheses have been also assumed (parameters are written 
in lowercase, decision variables in uppercase, and sets with capital Greek letters): 
1. There is a centralized decision-maker with infinite life that minimizes the total in-

vestment costs of generation assets with null operation costs. 
2. A finite temporal horizon Γ⊆ ℤ, which is discretized into periods p whose duration 

is typically one year for long-term planning is considered. Periods p∈ℕ are those 
where investments Kp (in MW) must be decided, while Kp for p∈Γ\ℕ are investments 
that have already been decided (and, therefore, they are inputs, i.e., Kp = kp). 

3. The lifespan of the investment Kp at period p is l > 1, i.e., the lifespan extends from p 
to p + l − 1. 

4. The rate rp > 0 to discount a future amount of money to reflect its present value does 
not depend on p, i.e., rp = r. 

5. Only one technology available for investment and, as other authors assume (see for 
example [22]), its investment cost fp (€/MW/period) increases according to inflation i: 𝑓௣ା௣ᇱ  =  𝑓௣ ⋅ ሺ1 + 𝑖ሻ௣ᇱ  =  𝑓଴ ⋅ ሺ1 + 𝑖ሻ௣ᇱା௣ (1)

6. The utilization ep of capacity Kp does not depend on p, i.e., ep = e. Parameter e is well-
known as the utilization of the asset Kp, i.e., the ratio of the energy produced in p 
divided by the installed power. Therefore, a mature technology is assumed. 

7. Inflation i is less than r and, therefore, the present value of the investment cost fp is 
decreasing: 𝑓௣ାଵሺ1 + 𝑟ሻ  =  ൬1 + 𝑖1 + 𝑟൰ ⋅ 𝑓௣  <  𝑓௣ (2)

Hereinafter the quotient (1 + i)/(1 + r) will be called real discount factor (RDF). 
8. Demand dp (MWh demanded in p) is inelastic and must always be satisfied. It is rep-

resented as a single block per year that, in capacity expansion analyses, may be in-
putted as the yearly peak value multiplied by the number of hours in p. Note that dp 
must be satisfied with the capacities Kp′ at periods p′ ∈ Γ with p − l + 1 ≤ p′ ≤ p. 
Although the hypotheses described here may appear simplistic (for example, the con-

sideration of only one technology for investment), from a practical point of view, the an-
nualization of the resulting investment costs, based on a thorough and theoretical rigorous 
mathematical analysis, must be understood as a mathematical financial tool for invest-
ment decisions that may be applied in more complex analyses (like those with more than 
one technology for investment). Indeed, several annualizations may be chosen but the 
proposed one guarantees the FDP property under the abovementioned hypotheses, which 
could be relaxed in the absence of more rigorous studies. Understood in this way, the 
annualization we propose is a powerful mathematical tool to estimate long term electricity 
prices, assuming that, whatever the market mechanism is, total electricity prices should 
guarantee the investment costs recovery, ensuring the economic sustainability of the 
power sector even when non-served demand is not allowed. Moreover, the proposed an-
nualization can help not only in the investment planning of electricity companies, but also 
in the reforming processes of current electricity markets. These processes must be set by 
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regulators, which need tools to assess, for instance, the need of capacity remuneration 
mechanisms in power systems with a large amount of renewable generation, in which 
energy only markets tend to fail due to the existence of very low variable costs.  

3. Optimal Investment Plan (OIP) 
Considering the above-mentioned assumptions, this section describes some useful 

properties of the OIP and how to obtain it. 
3.1. OIP Computation 

Appendix A proves that the OIP is unique and can be directly computed as follows: 𝐾௣  =  𝑘௣ି௠೛⋅௟ + 𝑑௣ି൫௠೛ିଵ൯⋅௟ − 𝑑௣ି൫௠೛ିଵ൯⋅௟ିଵ𝑒 +. . . . + 𝑑௣ି௟ − 𝑑௣ି௟ିଵ𝑒 + 𝑑௣ − 𝑑௣ିଵ𝑒  (3) 

where: 𝑚௣  =  𝑚𝑖𝑛ሼ𝑚 ∈ ℕ/𝑝 − 𝑚 ⋅ 𝑙 <  0ሽ (4)

Therefore, the new capacity investments Kp at period p depend only on inputs of the 
model, namely, the demand in periods before or equal to p, the hours of utilization e, and 
the capacity kp′ already installed for the period p′∈Γ\ℕ closest to the first period (p = 0) of 
the temporal horizon. Note that each quotient in (3) represents the capacity needed to 
satisfy the variation of the demand in two consecutive years p′ and p′ − 1, p′ being a year 
before p a number of times multiple of the lifespan l, when certain quantity of the installed 
capacity expires. 
3.2. OIP Sensitivity with Respect to the Demand 

Appendix B proves that the variation ΔKp′ of the OIP with respect to the variation ΔDp 
in the demand dp at period p is: 

𝛥𝐾௣ᇲ𝛥𝐷௣  =  ⎩⎪⎨
⎪⎧ 1𝑒  𝑖𝑓 𝑝ᇱ  =  𝑝 + 𝑛 ⋅ 𝑙 − 1𝑒  𝑖𝑓 𝑝ᇱ  =  𝑝 + 𝑛 ⋅ 𝑙 + 10    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  for 𝑛ℕ (5)

This result will be used in Section 5 to analyze how ΔDp influences the total cost of 
the investments and means that the variation ΔKp′ in a future period p′ respect to the vari-
ation ΔDp in a past period p takes only values if the difference between both periods p′ and 
p is a multiple of the lifespan l or a multiple of l plus 1 (since, as mentioned before, the 
capacity Kp′ must satisfy the variation of the demand in two previous consecutive years p 
and p − 1). Moreover, when positive, the variation ΔDp relative to ΔKp′ is the utilization e 
or −e since dp − dp − 1 is not satisfied with the OIP but with the production generated from 
the OIP. 

4. Prices to Recover Investment Costs 
Appendix C proves that, for the previously computed OIP, the energy prices Pp 

(€/MWh) that allow the exact recovery of the investment costs fp satisfy: 𝑃௣  =  𝑓௣𝑒 ⋅ 𝑠  =  𝑃଴ ⋅ ሺ1 + 𝑖ሻ௣ (6)

where: 

𝑠 =  ෍ ൬1 + 𝑖1 + 𝑟൰௣௟ିଵ
௣ ୀ ଴  (7)

Therefore, on the one hand, price Pp is equal to fp divided by the utilization e of the 
investment, taking into account s, which is the summation of RDF over the generation 
assets’ lifespan. On the other hand, Equation (6) identifies the well-known result that 
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states that the prices to recover investment costs growing up with the inflation i should 
also increase with the inflation i [23]. Taxes can be taken into account in (6) by substituting 
fp with f′p as shown in Appendix D. 

5. Finite Dual Pricing Property (FDP) 
This section presents the annualized investment costs proposed in this paper and 

proves how the resulting electricity marginal prices fulfils the FDP property. It also pre-
sents how these prices can be computed with MP, avoiding complexities like dealing with 
infinite horizons. 

5.1. The Infinite Horizon Problem with Cost C∞: Prices to Recover Investment Costs as Dual 
Variables 

If the original infinite horizon problem is considered, the minimization of the present 
value of the total investment cost is: 

𝑀𝑖𝑛௄೛ ஹ ଴ ൝𝐶ஶ  =  ෍ 𝑓௣ᇱ ⋅ 𝐾௣ᇱሺ1 + 𝑟ሻ௣ᇱஶ
௣ᇱ ୀ ଴ ൡ (8)

subject to the generation-demand balance constrain (dp must be satisfied with a utilization 
e of the non-expired investments Kp′ installed at periods before p, i.e., p − l + 1 ≤ p′ ≤ p): 

𝑑௣  =  𝑒 ⋅ ෍ 𝐾௣ᇱ௣
௣ᇱ ୀ ௣ି௟ାଵ  (9)

Appendix E proves that the dual variables L∞p of (9) when minimizing the objective 
function in (8) are: 

𝐿௣ஶ  =  
⎩⎪⎪⎨
⎪⎪⎧ ෍ 𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ା௡⋅௟

௡∈ሼℕ:௣ା௡⋅௟ஸஶሽ −෍ 𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ା௡⋅௟ାଵ
௡∈ሼℕ:௣ା௡⋅௟ାଵஸஶሽ ⎭⎪⎪⎬

⎪⎪⎫
 (10)

It also proves that L∞p are the discounted prices Pp of (6) (taxes can be considered as 
indicated in Appendix D), i.e.,: 𝐿௣  =  𝑃௣ሺ1 + 𝑟ሻ௣ (11)

This result can be also drawn from [23]. However, C∞ has an infinite summation that 
makes impossible the exact computation of primal investment decisions with MP. To 
overcome this drawback, the next subsection presents a finite truncation C of C∞ that guar-
antees the FDP property without a residual value in its formulation. 
5.2. The Straightforward Truncation Cp of C∞ 

It is well known that the straightforward truncation Cp of C∞ up to p periods (C∞ with 
∞ = p in (8)), without including a residual value in Cp, is not valid for computing the dis-
counted prices Pp as the dual variables Lpp of (9) minimizing Cp (note that Cp and Lpp are 
formulated as C∞ and L∞p substituting ∞ by p in (8) and (10), respectively). As an example, 
let us consider the data in Table 1. 

Table 1. Inputs of the case example. 

f0 (€/MW/Year) l (Years) e (Hours) i (%) r (%) 
1.4⋅106 5 2193 2 10 
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Apart from the chosen lifespan l = 5 which has been kept small for the sake of sim-
plicity (even though this will yield too high energy prices in this example), the rest of the 
data may correspond to onshore wind farm installations (according to the International 
Renewable Energy Agency, see [24]). With these data, (7) leads to s = 4.3237. 

Using this dataset, Figure 1 depicts Lp7 (green discontinuous line named by LS7) and 
the discounted price P7/(1 + r)7 = 87.03 €/MWh (brown line named by P7), as a function of 
p. Each grey column in Figure 1 represents one of the two summations in (10) (making ∞ 
= p), positive columns (grey columns named by P) corresponding to the first summation 
(adding n ∈ ℕ such that p+n⋅5 ≤ p, with p = 7) while negative ones (grey columns named 
by N) to the second (n ∈ ℕ: 7 + n⋅5 + 1 ≤ p). According to (10), Lp7 is the summation of all 
the columns (whether positive or negative ones) before p. 

 
Figure 1. Approximation error of C∞ for finite dual pricing (FDP). 

Note that for any p, Lp7 does not exactly coincide with P7/(1 + r)7. However, a good 
approximation can be computed with a value of p sufficiently large. Figure 1 also presents 
the approximation error of Lp7 with respect to P7/(1 + r)7 (in %, blue line labelled “Error”). 
As can be seen, to estimate P7 with less than 10% error, 30 additional years are needed, 
leading to a total horizon length of 7 + 30 years. According to an investment model based 
on [21] and [25] with only one week per year, an hourly basis, and a time horizon of 37 
years, the execution time for such an error would be approximately 45 min. Larger hori-
zons lead easily to undesirable execution times or “out of memory” errors on a 64-bit Intel-
Core CPU at 3.4 GHz. However, as the next subsection proves, the proposed truncation C 
of C∞ provides the exact price P7 with a total horizon of 7+0 years in only 5 min, considering 
the abovementioned computer. 
5.3. The valid truncation C of C∞ for FDP 

Let us consider an annualization fp,p′ of fp in Γp = {p, …, min(p, p + l − 1)}, p ∈ {0, 1, …, 
p} and p′ ∈ Γp (thus, annualization over the generation assets’ lifespan), i.e.,: 𝑓௣  =  ෍ 𝑓௣,௣ᇱሺ1 + 𝑟ሻ௣ᇲି௣௣ᇱ∈௰೛  (12)

and such that fp,p′ is uniform and proportional respect to fp, i.e.,: 𝑓௣,௣ᇱ  =  𝑓௣𝑠 ⋅ ሺ1 + 𝑖ሻ௣ᇱି௣  𝑝 ∈ ቄ0, . . , 𝑝ቅ , 𝑝′ ∈ 𝛤௣ (13)

The objective function (8) truncated to {0, 1, …, p} using fp,p′ becomes (taxes can be 
easily included by substituting fp by f′p, as it is described in Appendix D): 
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𝐶 =  ෍ ቐ𝐾௣ ⋅ ෍ 𝑓௣,௣ᇱሺ1 + 𝑟ሻ௣ᇱ௣ᇱ∈௰೛ ቑ௣
௣ ୀ ଴  (14)

Appendix F proves that the dual variables Lp of (9) when minimizing the objective 
function (14) are: 

𝐿௣  =  
⎩⎪⎪⎨
⎪⎪⎧ 𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௨௣

௨ ୀ ௣−𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௨௣
௨ ୀ ௣ାଵ ⎭⎪⎪⎬

⎪⎪⎫
 (15)

Using the same inputs of Table 1, in Figure 2, grey columns represent each summand 
in (15), positive columns (grey columns named P) corresponding to the first summation 
while negatives (grey columns named N) to the second one. It also represents L7 (green 
discontinuous line named L7) and the discounted price P7/(1 + r)7 (brown line named P7) 
of (6), both as a function of p. 

 
Figure 2. C is a valid truncation of C∞ for FDP. 

As can be seen only the first term in the first summand of (15) is not compensated 
with a term in the second summand. Therefore: 𝐿௣  =  𝑓଴𝑠 ⋅ 𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣  =  𝑓௣𝑠 ⋅ 𝑒 ⋅ ሺ1 + 𝑟ሻ௣  =  𝑃௣ሺ1 + 𝑟ሻ௣ (16)

Thus, 𝐿௣ are the discounted prices Pp of (6), and no approximation is needed, i.e.: 𝐿௣௣ ് 𝐿௣ஶ  =  𝐿௣  =  𝑃௣ሺ1 + 𝑟ሻ௣  (17)

For generalization purposes, proof of Appendix F considers the next generalization 𝑓௣,௣௔  of fp,p′ (generalization if a = i) as an alternative non-uniform annualization of fp in Γp 
for FDP, which depends on a parameter a: 
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𝑓௣,௣ᇱ௔  =  𝑓௣ ⋅ 𝑠௣௔𝑠 ⋅ ሺ1 + 𝑎ሻ௣ᇱି௣ 𝑝 ∈ ቄ0, . . , 𝑝ቅ , 𝑝′ ∈ 𝛤௣ (18)

being: 

𝑠௣௔  =  ∑ ቀ1 + 𝑖1 + 𝑟ቁ௣ᇱି௣௣ᇱ∈௰೛∑ ቀ1 + 𝑎1 + 𝑟ቁ௣ᇱି௣௣ᇱ∈௰೛  (19
)

6. Conclusions 
The current context of decarbonization of the energy system, with the closing of fossil 

fuel plants and the electrification of energy end usages, is entailing a significant increase 
in generation capacity based on renewable sources of energy, most of them with negligible 
operation costs. In this context, there is a need to assess how the electricity prices that 
would allow the recovery of the total generation cost (operation and investment costs) 
could evolve in the future years. This paper addresses this challenge when no scarcity 
prices (that appear in hours with non-supplied demand) are allowed, which is the practi-
cal approach of regulators and system operators of many power systems. 

Based on a stylized cost-minimization model that only considers one renewable tech-
nology for investment, this paper proposes a novel annualization of the investment costs 
(summarized in Equations (12) and (13)) that ensures the recovery of the investment costs. 
Although mathematically based on a marginalist approach with no additional capacity 
mechanisms, the proposed model is intended to provide the total electricity price estima-
tion independently of the market mechanism in place. The model can be solved with a 
finite MP problem despite the hypothesis of infinite life for companies, and the electricity 
prices are obtained from the dual variables of the demand balance constraints. 

With regard to other similar approaches in the literature, this approach: 
• Focuses on the electricity prices instead of on the estimation of the primal investment 

variables, proving they are the same as those that had been obtained from the original 
infinite model. In addition, no residual values to represent costs in periods beyond 
the finite horizon are needed. 

• Allows computing the exact m marginal prices of the infinite model using the pro-
posed model with a finite horizon of only m periods. The straightforward truncation 
of the infinite problems would need a much longer time horizon to reach a reasonable 
approximation of these same prices. 
Although some of the hypotheses of the model might seem simplistic (especially the 

assumption of a single renewable technology for investment), the proposed annualization 
of the investment costs must be understood as a sound financial mechanism to estimate 
long-term future electricity prices according to the awaited expansion of the renewable 
generation capacity. These types of studies are especially essential for generation compa-
nies when planning future investment strategies, but also for regulators to design suitable 
subsidies, capacity mechanisms, and energy policies, especially under the expected pene-
tration of renewable plants. 

The proposed annualization is a first step for long-term prices estimation to mitigate 
the approximation issues of other similar approaches that truncate the original infinite 
horizon. Current authors' work aims to extend this approach to represent several simul-
taneous technologies and generation companies, include storage facilities, and include 
non-constant utilization factors and inflation rates. 
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Nomenclature 
Indexes and sets  ℤ, ℕ integer/natural numbers 
Γ finite set of periods 
p, p periods and last period in G 
Γπ set of periods with capacity decided at p 
Scalars  

i inflation (%) 
l life span of investments (periods) 
Parameters  

fp investment cost (€/MW/period) 
tax corporate taxes (%) 𝑓௣ᇱ investment cost including taxes (€/MW/period) 
dp demand (MWh) 
rp discount rate (%) 
ep hours of utilization (hours) 
kp capacity investments already decided (MW) 
fp,p′ annualized investment costs (€/MW/period) 𝑓௣,௣ᇱ௔  annualized investment costs with non-uniform annualization 

(€/MW/period) 
ap amortization of investment costs (%) 
Variables (capital letters)  

C¥ infinite horizon cost (€) 
Cp straightforward truncation of C¥ up to p periods (€) 
C proposed truncation of C¥ up to p periods (€) 

L¥p,Lpp,Lp 
balance constraint dual variable minimizing C¥, Cp, and C 
(€/MWh) 

Kp new capacity investments (MW) 
ΔΔπ demand variation between p and p + 1 (MWh) 
Pp energy prices (€/MWh) 

Appendix A. OIP Computation 
This subsection proves that, with the above assumptions, the OIP is unique and can 

be computed from inputs by directly solving algebraic equations. Since dp must be satis-
fied with a utilization e of the non-expired investments Kp′ installed at periods p′ previous 
to p, i.e., p − l + 1 ≤ p′ ≤ p, it is: 

𝑑௣  =  𝑒 ⋅ ෍ 𝐾௣ᇱ௣
௣ᇱ ୀ ௣ି௟ାଵ  (A1)

Applying (A1) to p − 1 and subtracting it from (A1): 𝑑௣ − 𝑑௣ିଵ  =  𝑒 ⋅ ൫𝐾௣ − 𝐾௣ି௟൯ (A2)

And therefore: 
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𝐾௣  =  𝐾௣ି௟ + 𝑑௣ − 𝑑௣ିଵ𝑒  (A3) 

Kp is thus given by the reposition of the capacity Kp−l just expired (no longer available 
at period p) plus the amount needed to satisfy the demand variation dp − dp−1 (scaled by 
the utilization e). Since we are assuming that Kp ≥ 0, clearing from (A3), the demand dp 
must satisfy: −൫𝑑௣ − 𝑑௣ିଵ൯ ≤ 𝑒 ⋅ 𝐾௣ି௟ (A4) 

Therefore, we add the hypothesis that −(dp − dp−1) must not be larger than the used 
capacity e⋅Kp−l just expired, even if the demand dp between two consecutive periods de-
creases (i.e., dp ≤ dp−1). 

Applying (A5) to p = 0, it can be seen that K0 depends on d0 and d−1, but also on k−l 
which is the capacity already installed l periods before the first one p = 0. Therefore, K0 
depends only on the inputs d0, d−1, and k−l. Analogously, for a general p ∈ ℕ, applying (A6) 
recursively until a period p′ ∈ Γ\ℕ is reached, it can be seen that Kp is a function of inputs 
at periods lesser than or equal to p. Indeed: 𝐾௣  =  𝐾௣ି௟ + 𝑑௣ − 𝑑௣ିଵ𝑒  =  𝐾௣ିଶ⋅௟ + 𝑑௣ି௟ − 𝑑௣ି௟ିଵ𝑒 + 𝑑௣ − 𝑑௣ିଵ𝑒   =  𝑘௣ି௠೛⋅௟ + 𝑑௣ି൫௠೛ିଵ൯⋅௟ − 𝑑௣ି൫௠೛ିଵ൯⋅௟ିଵ𝑒 +. . . . + 𝑑௣ି௟ − 𝑑௣ି௟ିଵ𝑒 + 𝑑௣ − 𝑑௣ିଵ𝑒  

(A5)

where: 𝑚௣  =  𝑚𝑖𝑛ሼ𝑚 ∈ ℕ/𝑝 − 𝑚 ⋅ 𝑙 <  0ሽ (A6)

Appendix B. OIP Sensitivity with Respect to the Demand 
This subsection obtains some mathematical relationships between the variation ΔDp 

in the demand dp at period p, and the variation ΔKp′ of the OIP. Any variation ΔDp not only 
affects Kp but also Kp+1 since, applying (3) for p + 1: 𝐾௣ାଵ  =  𝑘௣ି௠೛శభ⋅௟ + 𝑑ሺ௣ାଵሻି൫௠೛శభିଵ൯⋅௟ − 𝑑ሺ௣ାଵሻି൫௠೛శభିଵ൯⋅௟ିଵ𝑒 +. . . . + 𝑑ሺ௣ାଵሻି௟ − 𝑑ሺ௣ାଵሻି௟ିଵ𝑒 + 𝑑௣ାଵ − 𝑑௣𝑒  

(A7) 

Note that since l > 1 only one term in (A7) includes dp (the last one). Furthermore, 
applying (3) to p+n⋅l, n∈ℕ, ΔDp also affects future investments Kp+n·l: 𝐾௣ା௡⋅௟  =  𝑘௣ି௠೛శ೙⋅೗⋅௟ + 𝑑ሺ௣ା௡⋅௟ሻି൫௠೛శ೙⋅೗ିଵ൯⋅௟ − 𝑑ሺ௣ା௡⋅௟ሻି൫௠೛శ೙⋅೗ିଵ൯⋅௟ିଵ𝑒 +. . . . + 𝑑௣ − 𝑑௣ିଵ𝑒 +. . . + 𝑑ሺ௣ା௡⋅௟ሻି௟ − 𝑑ሺ௣ା௡⋅௟ሻି௟ିଵ𝑒 + 𝑑௣ା௡⋅௟ − 𝑑ሺ௣ା௡⋅௟ሻିଵ𝑒  

(A8)

Note that (A8) is a generalization of (3) (since (3) is (A8) for n = 0). Analogously, gen-
eralizing (A7), ΔDp also affects Kp+n·l+1, n ∈ ℕ: 𝐾௣ା௡⋅௟ାଵ  =  𝑘௣ି௠೛శ೙⋅೗శభ⋅௟ + 𝑑ሺ௣ା௡⋅௟ାଵሻି൫௠೛శ೙⋅೗శభିଵ൯⋅௟ − 𝑑ሺ௣ା௡⋅௟ାଵሻି൫௠೛శ೙⋅೗శభିଵ൯⋅௟ିଵ𝑒 +. . . + 𝑑௣ାଵ − 𝑑௣𝑒 +. . . + 𝑑ሺ௣ା௡⋅௟ାଵሻି௟ − 𝑑ሺ௣ା௡⋅௟ሻି௟𝑒 + 𝑑௣ା௡⋅௟ାଵ − 𝑑௣ା௡⋅௟𝑒  

(A9)

From (A8) and (A9), it is proven that for n∈ℕ: 

𝛥𝐾௣ᇲ𝛥𝐷௣  =  ⎩⎪⎨
⎪⎧ 1𝑒  𝑖𝑓 𝑝ᇱ  =  𝑝 + 𝑛 ⋅ 𝑙 − 1𝑒  𝑖𝑓 𝑝ᇱ  =  𝑝 + 𝑛 ⋅ 𝑙 + 10    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (A10)



Sustainability 2021, 13, 1993 12 of 16 
 

Appendix C. Prices to Recover Investment Costs 
Prices that recover investment costs fp′ over the generation assets’ lifespan should sat-

isfy: 

𝑓௣ᇱ  =  ෍ 𝑒 ⋅ 𝑃௣ᇱାఛሺ1 + 𝑟ሻఛ௟ିଵ
ఛ ୀ ଴  

(A11)

Note that fp′ is assumed to be satisfied with prices Pp in years p in the lifespan of the 
capacity installed at p′. Applying (A11) to p′ = p + n⋅l and p′ = p + n⋅l + 1, n∈ℕ, dividing the 
later by (1 + r), and subtracting both: 

𝑓௣ା௡⋅௟ − 𝑓௣ା௡⋅௟ାଵሺ1 + 𝑟ሻ  =  𝑒 ⋅ 𝑃௣ା௡⋅௟ − 𝑒 ⋅ 𝑃௣ାሺ௡ାଵሻ⋅௟ሺ1 + 𝑟ሻ௟  
(A12)

Applying (1) to fp+n⋅l+1 in (A12) and then to fp+n⋅l: 

𝑓௣ା௡⋅௟ ⋅ ൬1 − 1 + 𝑖1 + 𝑟൰  =  𝑒 ⋅ ൬𝑃௣ା௡⋅௟ − 𝑃௣ାሺ௡ାଵሻ⋅௟ሺ1 + 𝑟ሻ௟ ൰ ⇔ 𝑓௣𝑒 ⋅ ሺ1 + 𝑖ሻ௡⋅௟ ⋅ ൬𝑟 − 𝑖1 + 𝑟൰  =  𝑃௣ା௡⋅௟ − 𝑃௣ାሺ௡ାଵሻ⋅௟ሺ1 + 𝑟ሻ௟  
(A13)

Dividing (A13) by (1+r)n⋅l: 𝑓௣𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௡⋅௟ ⋅ ൬𝑟 − 𝑖1 + 𝑟൰  =  𝑃௣ା௡⋅௟ሺ1 + 𝑟ሻ௡⋅௟ − 𝑃௣ାሺ௡ାଵሻ⋅௟ሺ1 + 𝑟ሻሺ௡ାଵሻ⋅௟ (A14)

Note that according to(A14), for any k ∈ ℕ: 

෍ ቊ𝑓௣𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௡⋅௟ ⋅ ൬𝑟 − 𝑖1 + 𝑟൰ቋ௞
௡ ୀ ଴  =  𝑃௣ − 𝑃௣ାሺ௞ାଵሻ⋅௟ሺ1 + 𝑟ሻሺ௞ାଵሻ⋅௟ (A15)

Therefore, taking limits in k: 𝑓௣𝑒 ⋅ ൬𝑟 − 𝑖1 + 𝑟൰ ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௡⋅௟ஶ
௡ ୀ ଴  =  𝑃௣ − 𝑙𝑖𝑚௞→ஶ 𝑃௣ାሺ௞ାଵሻ⋅௟ሺ1 + 𝑟ሻሺ௞ାଵሻ⋅௟ (A16)

Denoting Limp as the above limit and clearing Pp, (A16) is: 

𝑃௣  =  𝑓௣𝑒 ⋅ 𝑠 + 𝐿𝑖𝑚௣ 
(A17)

where: 

𝑠 =  1ቀ𝑟 − 𝑖1 + 𝑟ቁ ⋅ ∑ ቀ1 + 𝑖1 + 𝑟ቁ௡⋅௟ஶ௡ ୀ ଴  =  1 − ቀ 1 + 𝑖1 + 𝑑ቁ௟
ቀ𝑟 − 𝑖1 + 𝑟ቁ  =  ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇱ௟ିଵ

௣ᇱ ୀ ଴  
(A18)

which converges if i < r (see Section 2). Note that parameter s is a function of RDF. 
Substituting (A17) in (A11), and taking into account (1) and (A18): 𝑓௣  =  ෍ ቈ 𝑒ሺ1 + 𝑟ሻఛ ⋅ ቆ𝑓௣ାఛ𝑒 ⋅ 𝑠 + 𝐿𝑖𝑚௣ାఛቇ቉௟ିଵ

ఛ ୀ ଴  =  𝑓௣ ⋅ 1𝑠 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰ఛ௟ିଵ
ఛ ୀ ଴ + 𝑒 ⋅ ෍ 𝐿𝑖𝑚௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ

ఛ ୀ ଴  
=  𝑓௣ + 𝑒 ⋅ ෍ 𝐿𝑖𝑚௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ

ఛ ୀ ଴  

(A19) 

Therefore: ෍ 𝐿𝑖𝑚௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ
ఛ ୀ ଴  =  0 

(A20)
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Since Limp ≥ 0, (A20) holds if and only if Limp is 0 for every period p. Therefore, from 
(1) and (A17), prices to recover investment costs satisfy (6). 

Appendix D. Considering Corporate Taxes 
This annex adapts (6) when there are corporate taxes charged on the profits generated 

from the exploitation of the investments. Profits are computed by subtracting book amor-
tizations from incomes, that is, from the allocation of the investment cost fp′ over the peri-
ods p′ in which the assets are used. 

Let us consider that the amortization period coincides with the lifespan of an asset 
and that the amortization is represented through a percentage aτ+p of fp for the l periods τ 
starting from p, τ∈{0, …, l − 1}. Then: ෍ 𝑎௣ାఛ௟ିଵ

ఛ ୀ ଴  =  1 (A21)

Similarly to(A11), to recover investment costs, prices Pp must satisfy: 𝑓௣ + 𝑡𝑎𝑥 ⋅ ൭ ෍ 𝑒 ⋅ 𝑃௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ
ఛ ୀ ଴ − ෍ 𝑓௣ ⋅ 𝑎௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ

ఛ ୀ ଴ ൱  =  ෍ 𝑒 ⋅ 𝑃௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ
ఛ ୀ ଴  (A22)

being tax the percentage of taxes applied to the profit, assuming that incomes are greater 
than or equal to the amortizations. Extracting common factor to the right-hand side of 
A22) and clearing, Equation (A22) is equivalent to: 𝑓௣ ⋅ ൬1 − 𝑡𝑎𝑥 ⋅ 𝑐𝑎௣1 − 𝑡𝑎𝑥 ൰  =  ෍ 𝑒 ⋅ 𝑃௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ

ఛ ୀ ଴  (A23)

where cap is the present value, at period p, of the summation of the percentages aτ+p for τ = 
0, …, l − 1, i.e.,: 𝑐𝑎௣  =  ෍ 𝑎௣ାఛሺ1 + 𝑟ሻఛ௟ିଵ

ఛ ୀ ଴  (A24)

Note that, according to(A21), cap < 1 and therefore the left-hand side of (A23) is higher 
than fp, which can be interpreted as the investment cost f′p including the effect of taxes, 
i.e.,: 𝑓௣ᇱ  =  𝑓௣ ⋅ ൬1 − 𝑡𝑎𝑥 ⋅ 𝑐𝑎௣1 − 𝑡𝑎𝑥 ൰ (A25)

Following the same reasoning as in the previous subsection, but starting from (A23) 
and (A25) instead of (A11), the prices P′p taking taxes into account can now be computed 
as in (6) but using f′p instead of fp. 

Appendix E. Prices to Recover Investment Costs as Dual Variables of C∞ 
By definition, L∞p is: 

𝐿௣ஶ  =  𝑙𝑖𝑚௱஽೛→଴ 𝛥𝐶ஶ𝛥𝐷௣  =  ෍ 𝑓௣ᇱ ⋅ 𝑙𝑖𝑚௱஽೛→଴൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ሺ1 + 𝑟ሻ௣ᇱஶ
௣ᇱ ୀ ଴  (A26)

According to (5) (note that ΔKp′/ΔDp is independent of ΔDp): 
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𝐿௣ஶ  =  
⎩⎪⎪
⎨⎪
⎪⎧ ෍ 𝑓௣ା௡⋅௟ ⋅ 𝑙𝑖𝑚௱஽೛→଴ ൬𝛥𝐾௣ା௡⋅௟𝛥𝐷௣ ൰ሺ1 + 𝑟ሻ௣ା௡⋅௟ஶ

௡ ୀ ଴ +
෍ 𝑓௣ା௡⋅௟ାଵ ⋅ 𝑙𝑖𝑚௱஽೛→଴ ൬𝛥𝐾௣ା௡⋅௟ାଵ𝛥𝐷௣ ൰ሺ1 + 𝑟ሻ௣ା௡⋅௟ାଵஶ

௡ ୀ ଴ ⎭⎪⎪
⎬⎪
⎪⎫ 

 =  ൝ ෍ 𝑓௣ା௡⋅௟ ⋅ ሺ1/𝑒ሻሺ1 + 𝑟ሻ௣ା௡⋅௟ஶ
௡ ୀ ଴ − ෍ 𝑓௣ା௡⋅௟ାଵ ⋅ ሺ1/𝑒ሻሺ1 + 𝑟ሻ௣ା௡⋅௟ାଵஶ

௡ ୀ ଴ ൡ 

(A27)

and, therefore, (1), (A18), and (6) leads to: 

𝐿௣ஶ  =  
⎩⎪⎪⎨
⎪⎪⎧ ෍ 𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ା௡⋅௟

௡∈ሼℕ:௣ା௡⋅௟ஸஶሽ −෍ 𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ା௡⋅௟ାଵ
௡∈ሼℕ:௣ା௡⋅௟ାଵஸஶሽ ⎭⎪⎪⎬

⎪⎪⎫
 (A28)

and finally: 

𝐿௣ஶ  =  𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ ⋅ ൬𝑟 − 𝑖1 + 𝑟൰ ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௡⋅௟ஶ
௡ ୀ ଴  

 =  𝑓଴𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣ ⋅ 1𝑠  =  𝑓௣𝑠 ⋅ 𝑒 ⋅ 1ሺ1 + 𝑟ሻ௣  =  𝑃௣ሺ1 + 𝑟ሻ௣ 

(A29)

This last equation proves that L∞p is indeed the discounted price Pp of (6). 

Appendix F. Prices to Recover Investment Costs as Dual Variables of C with FDP 
The dual variable Lp of (9) when minimizing C using 𝑓௣,௣௔  in (14) with Γp = {p, …, 

min(p, p + l − 1)}: 

𝐿௣  =  𝑙𝑖𝑚௱஽೛→଴ 𝛥𝐶𝛥𝐷௣  =  ෍ ൞ ෍ 𝑓௣ᇱ,௣ᇱᇱ௔ ⋅ 𝑙𝑖𝑚௱஽೛→଴൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ሺ1 + 𝑟ሻ௣ᇱᇱ
௠௜௡ቀ௣,௣ᇱା௟ିଵቁ

௣ᇱᇱ ୀ ௣ᇱ ൢ௣
௣ᇱ ୀ ଴  (A30)

Applying now (1) and (19) (note that ΔKp′/ΔDp is independent of ΔDp): 

𝐿௣  =  ෍ ⎣⎢⎢
⎡ 𝑓௣ᇱሺ1 + 𝑟ሻ௣ᇱ ⋅ 𝑠௣ᇱ௔𝑠 ⋅ ൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ ⋅ ൞ ෍ ൬1 + 𝑎1 + 𝑟൰௣ᇳି௣ᇱ௠௜௡ቀ௣,௣ᇱା௟ିଵቁ

௣ᇳ ୀ ௣ᇱ ൢ⎦⎥⎥
⎤௣

௣ᇱ ୀ ଴  
 =  𝑓଴ ⋅ ෍ ⎣⎢⎢

⎡൬1 + 𝑖1 + 𝑟൰௣ᇱ ⋅ 𝑠௣ᇱ௔𝑠 ⋅ ൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ ⋅ ൞ ෍ ൬1 + 𝑎1 + 𝑟൰௣ᇳି௣ᇱ௠௜௡ቀ௣,௣ᇱା௟ିଵቁ
௣ᇳ ୀ ௣ᇱ ൢ⎦⎥⎥

⎤௣
௣ᇱ ୀ ଴  

 =  𝑓଴ ⋅ ෍ ⎣⎢⎢
⎡൬1 + 𝑖1 + 𝑟൰௣ᇱ ⋅ 1𝑠 ⋅ ൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ ⋅ ൞ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇱᇱି௣ᇱ௠௜௡ቀ௣,௣ᇱା௟ିଵቁ

௣ᇳ ୀ ௣ᇱ ൢ⎦⎥⎥
⎤௣

௣ᇱ ୀ ଴  
 =  𝑓଴ ⋅ ෍ ⎣⎢⎢

⎡1𝑠 ⋅ ൫𝛥𝐾௣ᇱ/𝛥𝐷௣൯ ⋅ ൞ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇳ௠௜௡ቀ௣,௣ᇱା௟ିଵቁ
௣ᇳ ୀ ௣ᇱ ൢ⎦⎥⎥

⎤௣
௣ᇱ ୀ ଴  

(A31)

From (5): 
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𝐿௣  =  
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ ෍ 𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇴ௠௜௡ቀ௣,௣ା௡⋅௟ା௟ିଵቁ

௣ᇴ ୀ ௣ା௡⋅௟௡∈ቄℕ:௣ା௡⋅௟ஸ௣ቅ −
෍ 𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇳ௠௜௡ቀ௣,௣ା௡⋅௟ା௟ቁ

௣ᇳ ୀ ௣ା௡⋅௟ାଵ௡∈ቄℕ:௣ା௡⋅௟ାଵஸ௣ቅ ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

 (A32)

In this expression, each term except the first one (for n = 0) in the first summand is 
the opposite of a term in the second summand. Effectively, if np = max{n ∈ ℕ: p + n⋅l + 1 ≤ 
p}, the first summand can be reduced to: 

෍ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇱᇱ  = ௠௜௡ቀ௣,௣ା௡⋅௟ା௟ିଵቁ
௣ᇱᇱ ୀ ௣ା௡⋅௟௡∈ቄℕ:௣ା௡⋅௟ஸ௣ቅ ෍ ⎣⎢⎢

⎡ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇱᇱ௠௜௡ቀ௣,௣ା௡⋅௟ା௟ିଵቁ
௣ᇱᇱ ୀ ௣ା௡⋅௟ ⎦⎥⎥

⎤௡೛
௡ ୀ ଴  =  

ቈ൬1 + 𝑖1 + 𝑟൰௣ + ൬1 + 𝑖1 + 𝑟൰௣ାଵ +. . + ൬1 + 𝑖1 + 𝑟൰௣ା௟ିଵ቉ + ቈ൬1 + 𝑖1 + 𝑟൰௣ା௟ + ൬1 + 𝑖1 + 𝑟൰௣ା௟ାଵ +. . + ൬1 + 𝑖1 + 𝑟൰௣ା௟ା௟ିଵ቉ +. . + ቈ൬1 + 𝑖1 + 𝑟൰௣ା௡೛⋅௟ + ൬1 + 𝑖1 + 𝑟൰௣ା௡೛⋅௟ାଵ +. . + ൬1 + 𝑖1 + 𝑟൰௣቉ 
 =  ෍ ൬1 + 𝑖1 + 𝑟൰௨௣

௨ ୀ ௣  

(A33)

and, analogously, the second summand becomes: 

෍ ⎣⎢⎢
⎡ ෍ ൬1 + 𝑖1 + 𝑟൰௣ᇱᇱ௠௜௡ቀ௣,௣ା௡⋅௟ା௟ቁ

௣ᇳ ୀ ௣ା௡⋅௟ାଵ ⎦⎥⎥
⎤௡೛

௡ ୀ ଴  =  ෍ ൬1 + 𝑖1 + 𝑟൰௨௣
௨ ୀ ௣ାଵ  (A34)

Therefore: 

𝐿௣  =  
⎩⎪⎪⎨
⎪⎪⎧ 𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௨௣

௨ ୀ ௣−𝑓଴𝑠 ⋅ 𝑒 ⋅ ෍ ൬1 + 𝑖1 + 𝑟൰௨௣
௨ ୀ ௣ାଵ ⎭⎪⎪⎬

⎪⎪⎫
 (A35)

Therefore, the dual variable Lp coincides exactly with Pp/(1 + r)p, the first term in the 
first summand (see (6)): 𝐿௣  =  𝑓଴𝑠 ⋅ 𝑒 ⋅ ൬1 + 𝑖1 + 𝑟൰௣  =  𝑓௣𝑠 ⋅ 𝑒 ⋅ ሺ1 + 𝑟ሻ௣  =  𝑃௣ሺ1 + 𝑟ሻ௣ (A36)

Note that no approximation is needed. 
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