

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Máquinas Eléctricas	
Código	DIE-GITI-312	
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas	
Impartido en	Grado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresas [Tercer Curso] Grado en Ingeniería en Tecnologías Industriales [Tercer Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	7,5 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Responsable	FIDEL FERNANDEZ BERNAL	
Horario	A determinar por el profesor	
Horario de tutorías	A determinar por el profesor	

Datos del profesorado		
Profesor		
Nombre	Fidel Fernández Bernal	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	D-307 Alberto Aguilera 25	
Correo electrónico	Fidel.Fernandez@iit.comillas.edu	
Profesor		
Nombre	Luis Rouco Rodríguez	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	D-122 Francisco de Ricci, 3	
Correo electrónico	Luis.Rouco@iit.comillas.edu	
Profesor		
Nombre	Lukas Sigrist	
Departamento / Área	Instituto de Investigación Tecnológica (IIT)	
Correo electrónico	Lukas. Sigrist@iit.comillas.edu	
Profesor		
Nombre	Michel Luis Rivier Abbad	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	D-504 Santa Cruz de Marcenado 26	

Correo electrónico	Michel.Rivier@iit.comillas.edu	
Profesor		
Nombre	Miguel Tejero Yagüe	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	D-301 Alberto Aguilera 25	
Correo electrónico	mtejero@icai.comillas.edu	
Profesor		
Nombre	Pablo Frías Marín	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	6ª planta. Alberto Aguilera 25	
Correo electrónico	Pablo.Frias@iit.comillas.edu	
Profesor		
Nombre Manuel Pérez Bravo		
Departamento / Área	Instituto de Investigación Tecnológica (IIT)	
Correo electrónico	mperezb@comillas.edu	
Profesores de laboratorio		
Profesor		
Nombre	Carmen Serrano Alonso	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	csalonso@icai.comillas.edu	
Profesor		
Nombre	Daniel Fernández Alonso	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	dfalonso@icai.comillas.edu	
Profesor		
Nombre	Eduardo Lorenzo Cabrera	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	elcabrera@icai.comillas.edu	
Profesor		
Nombre	Fernando Ibañez Barrado	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Correo electrónico	reo electrónico fibanez@icai.comillas.edu	
Profesor		
Nombre	Francisco Javier Ponce Cintas	
Departamento / Área	Departamento de Ingeniería Eléctrica	

Correo electrónico	fjponce@comillas.edu		
Profesor	Profesor		
Nombre	Francisco José Villalba Rosa		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	fjvillalba@icai.comillas.edu		
Profesor			
Nombre Javier García Aguilar			
Departamento / Área	Instituto de Investigación Tecnológica (IIT)		
Despacho	Francisco de Ricci, 3		
Correo electrónico	jgaguilar@comillas.edu		
Teléfono	4511		
Profesor			
Nombre	Javier Herrero Fuerte		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico j.herrero@icai.comillas.edu			
Profesor			
Nombre	Julio Rafael Portillo García		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	jrportillo@icai.comillas.edu		
Profesor			
Nombre	Luis Díez Maroto		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	Luis.Diez@iit.comillas.edu		
Profesor			
Nombre	Manuel Gómez de la Calle		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	mgdecalle@comillas.edu		
Profesor			
Nombre	Marcos García Viaño		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	eo electrónico mgviano@icai.comillas.edu		
Profesor			
Nombre	Nicolás Afonso Ferrer		
Departamento / Área	Departamento de Ingeniería Eléctrica		
Correo electrónico	nafonso@icai.comillas.edu		

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Electromecánica requiere un conocimiento profundo de Ingeniería Eléctrica por lo que esta asignatura amplia los conocimientos eléctricos adquiridos en las asignaturas de "Circuitos eléctricos", 1º curso, y "Electrotecnia" y "Campos Electromagnéticos", 2º curso.

Al finalizar el curso los alumnos conocerán los tipos de máquinas más habituales en los sistemas eléctricos con especial énfasis en los sistemas trifásicos: transformadores, maquinas de inducción y máquinas síncronas.

La asignatura tiene un claro carácter experimental por lo que los alumnos también serán capaces de ensayar según normas los tres tipos de máquinas, y de analizar en el laboratorio su comportamiento en carga y en vacío.

Prerequisitos

Asignaturas relacionadas: Electrotecnia y Campos electromagnéticos de 2º curso.

Para la teoría se requieren conocimientos básicos de electromagnetismo, capacidad para la resolución de circuitos eléctricos, y capacidad de cálculo vectorial y numérico.

Por su parte, en el laboratorio de la asignatura se precisan conocimientos básicos de seguridad eléctrica, manejo de equipos de medida, montaje de esquemas eléctricos y la elaboración de informes de ensayos. Finalmente, se requiere el manejo adecuado de aplicaciones informáticas en la ingeniería.

Competencias - Objetivos

Competencias

GENERALES		
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.	
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.	
CG05	Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.	
ESPECÍFICAS		
CEE01	Capacidad para el cálculo y diseño de máquinas eléctricas.	
CRI04	Conocimiento y utilización de los principios de teoría de circuitos y máquinas eléctricas.	

Resultados de Aprendizaje

RA1	Comprender y elegir el modelo adecuado de máquina eléctrica para el problema concreto que se pretende resolver
RA2	Calcular caídas de tensión, rendimientos y corrientes de cortocircuito en transformadores. Valorar dichos resultados dentro de contexto y elegir adecuadamente el transformador para optimizar su funcionamiento
RA3	Determinar el punto de operación de máquinas de inducción y máquinas síncronas y el efecto que ejercen las distintas variables de la instalación
RA4	Realizar ensayos normalizados de máquinas eléctricas para caracterizar las máquinas y obtener los modelos equivalentes correspondientes. Valorar adecuadamente los resultados de dichos ensayos.
RA5	Comprender y aplicar criterios y procedimientos de seguridad en los ensayos a máquinas eléctricas.

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Teoría

Tema 1: Ampliación de transformadores monofásicos y trifásicos

- 1. Repaso de fundamentos de Campos Electromagnéticos aplicados a las máquinas eléctricas.
- 2. Repaso del modelo físico, modelo eléctrico, magnitudes unitarias, ensayos, índice horario.
- 3. Caída de tensión. Valor máximo. Aproximación de Kapp. Efecto del factor de potencia. Valores típicos.
- 4. Corriente de cortocircuito. Potencia de cortocircuito. Valores típicos. Efectos Electrodinámicos.
- 5. Rendimiento. Grado óptimo de carga y factor de potencia. Valores típicos.
- 6. Manejo de catálogos y placa de características.
- 7. Fundamentos de autotransformadores.

Tema 2: Profundización en los fundamentos de máquinas eléctricas rotativas

- 1. Tipos de máquinas rotativas.
- 2. Principio de funcionamiento de la máquina de corriente continua. Modelo simplificado. Regulación básica de velocidad. Par.
- 3. Máquina de corriente alterna. Campo magnético giratorio. Fuerza electromotriz inducida. Devanados distribuidos y acortados. Máquinas multipolares.
- 4. Principios básicos de funcionamiento de la máquina síncrona. Par motor y generador. Par máximo. Tipos constructivos.
- 5. Principios básicos de funcionamiento de la máquina de inducción de jaula de ardilla. Tipos constructivos.

Tema 3: La máquina de inducción

- 1. Circuito equivalente. Valores típicos.
- 2. Curva par-deslizamiento. Modos de funcionamiento. Curva par-velocidad.
- 3. Manejo de catálogos y placa características. Ensayos.
- 4. Problemática del arranque. Arranque estrella-triángulo. Arranque por resistencia adicional rotórica. Doble jaula. Ranuras profundas.
- 5. Motor monofásico. Funcionamiento básico y métodos de arranque.
- 6. Regulación de velocidad mediante control V/f y aplicación al arranque suave.

Tema 4: La máquina síncrona

- 1. Circuito equivalente. Valores típicos. Ensayos.
- 2. Diagrama vectorial de tensiones y flujos. Cargas inductivas y capacitivas y efectos magnetizantes y desmagnetizantes.
- 3. Funcionamiento sobre carga pasiva: regulación de tensión y velocidad. Característica exterior. Curva de regulación.
- 4. Funcionamiento sobre red infinita: regulación de potencias activa y reactiva. Curvas en V de Mordey.
- 5. Límites de funcionamiento y ábaco PQ.

Laboratorio

Laboratorio

- SE. Seguridad eléctrica. Efectos de la corriente eléctrica. Medidas de protección. Normas de seguridad.
- T1. Ensayos de rutina de transformador trifásico. Medida de resistencia. Ensayo de vacío. Ensayo de cortocircuito. Modelo equivalente.
- **T2. Autotransformador**. Construcción de un autotransformador. Ensayo de carga resistiva: cálculo de la caída de tensión y del rendimiento.
- **A1. Ensayos de rutina de máquina asíncrona**. Medida de resistencia. Ensayo de vacío. Ensayo de rotor bloqueado. Modelo equivalente en l
- **A2. Ensayo en carga de la máquina asíncrona**. Ensayo de carga como motor y generador, con tarado de la máquina auxiliar (máquina de corriente continua), para el cálculo del rendimiento por balance de potencias.
- S1. Ensayos de rutina de la máquina síncrona. Medida de resistencia. Ensayo de vacío. Ensayo de cortocircuito. Modelo equivalente.
- S2. La máquina síncrona como generador sobre carga pasiva. Sin regulación. Con regulación de tensión. Con regulación de velocidad.
- **S3.** La máquina síncrona como generador sobre red infinita. Acoplamiento de la máquina síncrona a la red eléctrica. Control de potencias activa y reactiva. Funcionamiento como compensador síncrono.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- 1. **Lección expositiva**: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes. Previa a las sesiones teóricas se podrán realizar pequeñas pruebas para evaluar el trabajo no presencial de los alumnos.
- 2. **Resolución en clase de problemas ejemplo:** Resolución de algún problema clave para situar al alumno en contexto. La resolución correrá a cargo del profesor y los alumnos de forma cooperativa.
- 3. **Resolución en clase de problemas propuestos:** Resolución de problemas que el alumno ha debido preparar previamente. La resolución correrá a cargo del profesor y los alumnos de forma cooperativa.
- 4. **Resolución grupal de problemas.** El profesor planteará pequeños problemas que los alumnos resolverán en pequeños grupos en clase y cuya solución discutirán con el resto de grupos.
- 5. **Prácticas de laboratorio**. Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas. Las prácticas de laboratorio requerirán de la realización de un trabajo previo de preparación y finalizar con la redacción de un informe de laboratorio. Previamente a toda práctica de laboratorio se realizará una pequeña prueba para comprobar la preparación de la misma así como el

CG03, CG04, CG05, CEE01, CRI04

análisis de la última práctica.

6. **Tutorías** se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

- 1. **Estudio del material presentado en clase**. Actividad realizada individualmente por el estudiante repasando y completando lo visto en clase.
- 2. **Estudio del material teórico no presentado en clase**. Algunos temas serán estudiados por el alumno sin presentación teórica en clase. Se mandarán problemas y actividades individuales y cooperativas que luego se discutirán en clase para asegurarse de la correcta comprensión por parte del alumno.
- 3. **Resolución de problemas propuestos.** La resolución correrá a cargo del profesor y los alumnos de forma cooperativa.
- 4. **Trabajo en grupo.** Se formarán grupos de trabajo que tendrán que realizar una tarea fuera del horario lectivo que requerirá compartir la información y los recursos entre los miembros con vistas a alcanzar un objetivo común.
- 5. **Preparación de las prácticas** de laboratorio y elaboración de los informes de laboratorio.

El objetivo principal del trabajo no presencial es entender y comprender los conceptos de la asignatura, que sólo pueden alcanzarse mediante el trabajo del alumno.

CG03, CG04, CG05, CEE01, CRI04

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio	
34.00	25.00	16.00	
HORAS NO PRESENCIALES			
Resolución de problemas de carácter práctico o aplicado	Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Prácticas de laboratorio	
41.00	75.00	34.00	
CRÉDITOS ECTS: 7,5 (225,00 horas)			

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
Exámenes	 Exámenes de carácter teórico-práctico: intertrimestral y final Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	63

Evaluación continua del rendimiento	 Pruebas cortas de evaluación continua Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Asistencia y participación en clase 	7
	 Informes y Ensayos Actitud responsable en el trabajo en un entorno de riesgo eléctrico. Realizar montajes eléctricos, uso de equipos de medida/control, y ejecución de los ensayos. Aplicación de conceptos a la realización de prácticas en el laboratorio. Análisis crítico de los resultados obtenidos en las prácticas de laboratorio. Presentación y comunicación escrita. 	
Evaluación del trabajo experimental	Montaje eléctrico. Realizar montajes eléctricos, uso de equipos de medida/control, y ejecución de los ensayos. Ensayo eléctrico. Realizar y explicar el ensayo. Informe del examen	30 %

Calificaciones

Convocatoria ordinaria

Nota Total: 70% Teoría + 30% Laboratorio

Teoría (sobre 100%): 5% nota de clase, 5% prueba de seguimiento (prueba corta), 20% examen intersemestral, 70% examen final. La prueba corta se realizará en horas de clase.

Laboratorio (sobre 100%): 50% prácticas de laboratorio y 50% examen práctico final. Para aprobar el laboratorio se exige una **nota mínima de 5 en el examen práctico**. En caso de suspender el laboratorio, se tendrán que repetir las partes suspensas (examen teórico y/o examen práctico).

Para aprobar la asignatura se exige una **nota mínima de 5 en teoría y laboratorio**. Si se aprueba una parte y se suspende otra, en el acta figurará la calificación de la parte suspendida y se guardará la calificación de la parte aprobada hasta la convocatoria extraordinaria.

La asistencia a clase es obligatoria. La inasistencia no justificada a más de un 15% de las clases de teoría podría suponer la pérdida de la convocatoria ordinaria. La inasistencia a dos o más prácticas del laboratorio (justificadas o no justificadas) podría suponer la pérdida de la convocatoria ordinaria y extraordinaria. En todo caso, para poder asistir al laboratorio es necesario aprobar un test de seguridad eléctrica.

Convocatoria extraordinaria

Nota Total: 70% Teoría + 30% Laboratorio

Teoría (sobre 100%): 25% calificación que obtuvo el alumno en su **evaluación continua** de la teoría (nota de clase + prueba corta + examen intertrimestral), 75% examen convocatoria extraordinaria.

Laboratorio (sobre 100%): 50% calificación que obtuvo el alumno en su evaluación continua del laboratorio (prácticas de laboratorio), y 50% examen convocatoria extraordinaria. Para aprobar el laboratorio se exige una nota mínima de 5 en el examen de convocatoria extraordinaria.

Para aprobar la asignatura se exige una **nota mínima de 5 en teoría y laboratorio**. Si se aprueba una parte y se suspende otra, en el acta figurará la calificación de la parte suspendida. Si se repite la asignatura no se conservará la nota de la parte aprobada si se diera el caso.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- J. Fraile Mora, "Máquinas Eléctricas". 7ª ed., Garceta, Madrid, 2015. ISBN 978-841622813
- J. Fraile Mora, "Problemas de Máquinas Eléctricas". 2ª ed., Garceta, Madrid, 2015. ISBN 978-8416228140
- J. Sanz Feito, "Máquinas Eléctricas". Prentice Hall, Madrid, 2002. ISBN 978-8420533919

Bibliografía Complementaria

G.R. Slemon, A. Straughen, "Electric Machines". Addison-Wesley, Reading, Massachusetts, 1980. ISBN 978-0201077308

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792