

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura				
Nombre completo	Machine Learning II			
Código	DOI-MBD-524			
Título	Máster en Big Data. Tecnología y Analítica Avanzada/Master in Big Data Technologies and Advanced Analytics			
Impartido en	Máster en Big Data. Tec. y Analítica Avanzada/Master in Big Data Technologies and Advanced Analytic [Primer Curso]			
Nivel	Master			
Cuatrimestre	Semestral			
Créditos	6,0 ECTS			
Carácter	Obligatoria			
Departamento / Área	Departamento de Organización Industrial			
Responsable	Eugenio F. Sánchez Úbeda			
Horario de tutorías	Fijar cita previa por email			

Datos del profesorado				
Profesor				
Nombre	Eugenio Francisco Sánchez Úbeda			
Departamento / Área	Departamento de Organización Industrial			
Despacho	Santa Cruz de Marcenado 26			
Correo electrónico	Eugenio. Sanchez@iit.comillas.edu			
Teléfono	2706			
Profesor				
Nombre	Jaime Boal Martín-Larrauri			
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones			
Despacho	Alberto Aguilera 25 [220]			
Correo electrónico	Jaime.Boal@iit.comillas.edu			
Teléfono	2742			
Profesor				
Nombre	Jorge Ayuso Rejas			
Departamento / Área	Departamento de Telemática y Computación			
Correo electrónico	jayuso@icai.comillas.edu			
Profesor				
Nombre	Miguel Ángel Sanz Bobi			
Departamento / Área	Departamento de Telemática y Computación			

Despacho	Alberto Aguilera 25 [D-419]	
Correo electrónico	Miguelangel.Sanz@iit.comillas.edu	
Teléfono	4240	
Profesor		
Nombre	Alberto Gascón González	
Departamento / Área	Departamento de Organización Industrial	
Correo electrónico	alberto.gascon@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Este curso se centra en un conjunto de herramientas de aprendizaje automático para modelar y comprender conjuntos de datos complejos. En particular, el curso describe las herramientas seleccionadas agrupadas según tres enfoques principales: métodos de ensamblado, aprendizaje profundo y aprendizaje por refuerzo. Estos enfoques principales se complementan con otros temas como algoritmos genéticos y sistemas de recomendación. Para lograr este objetivo, el curso se ha planteado como un equilibrio entre la teoría y la práctica.

Prerequisitos

Se requieren conocimientos básicos de Cálculo y Álgebra (comprender y manipular ecuaciones, comprensión total de funciones y funciones inversas, comprender límites, derivadas e integrales, conocer reglas para producto y suma, etc.). También se requieren conocimientos básicos de Estadística (estadística descriptiva, modelos de distribución de probabilidad discretos y continuos, muestreo y conceptos básicos de inferencia estadística), así como conocimientos sobre métodos estándar de Machine Learning (regresión, clasificación y aprendizaje no supervisado).

Se requieren conocimientos básicos de Programación en R y Python para las sesiones de práctica.

Competencias - Objetivos

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

- 1. Ensemble learning. Boosting, Bagging and Stacking. Random Forest and Gradient Boosting.
- 2. Genetic algorithms.
- 3. Deep learning. Convolutional Networks and Autoencoders.
- 4. Deep learning applications. Computer Vision and speech recognition.
- 5. Reinforcement learning.
- 6. Association rules and collaborative filtering in recommender Systems.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

La metodología utilizada se centrará en facilitar el aprendizaje tanto de los conceptos teóricos como la puesta en práctica de los mismos, requiriendo la participación activa de los estudiantes. Además, las actividades realizadas en clase de forma presencial se deben complementar con el trabajo individual del estudiante fuera del horario de clase.

Metodología Presencial: Actividades

Clases magistrales expositivas y participativas: El profesor introducirá los conceptos fundamentales de cada tema, junto con algunas recomendaciones prácticas, y pasará por ejemplos ilustrativos para apoyar la explicación. Se incentivará la participación activa planteando preguntas abiertas para fomentar la discusión

Sesiones prácticas con uso de software: Los estudiantes trabajarán bajo la supervisión del profesor, aplicando los conceptos y técnicas descritos en clase a problemas reales.

Metodología No presencial: Actividades

Estudio personal: Los estudiantes revisarán el material disponible para entender e interiorizar los conceptos teóricos de la asignatura y aprender a ponerlos en práctica.

Elaboración de trabajos: Los estudiantes realizarán ejercicios prácticos con el ordenador para fijar los conceptos teóricos de la asignatura y desarrollar las habilidades necesarias para poder resolver diferentes tipos de problemas utilizando las técnicas consideradas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Teoría		35	
Práctica		25	
HORAS NO PRESENCIALES			
Estudio		40	
Realización de trabajos cola	aborativos	60	
Trabajo autónomo sobre co	ontenidos prácticos	20	

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Calificaciones

Se deben cumplir las siguientes condiciones para aprobar el curso:

- Una calificación global mínima de al menos 5 sobre 10.
- Una nota mínima en el examen final de 4 sobre 10.

La calificación global se obtiene de la siguiente manera:

• El examen final representa el 35% de la calificación final si la calificación en este examen es al menos 4. En otro caso, el examen

final representa el 100% de la calificación general.

- El examen parcial representa el 15%.
- Los trabajos prácticos suponen el 50% de la nota final.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Goodfellow, I., Bengio, Y. and Aaron Courville, A. (2016). Deep Learning. Sixth Edition. Springer.
- James, G., Witten, D., Hastie, T. and Tibshirani, R. (2015). Introduction to Statistical Learning with applications in R. Sixth Edition. Springer.
- Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd Ed., Springer, New York, N.Y., 2009

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

PLAN DE TRABAJO Y CRONOGRAMA

S2	Introduction			
S2	Ensemble Learning			
S3	Ensemble Learning			
S3	Ensemble Learning			
S4	Ensemble Learning			
S4	Ensemble Learning			
S5	Ensemble Learning			
S5	Genetic Algorithms			
S6	Genetic Algorithms			
S6	Genetic Algorithms			
S7	Backfitting			
S7	Evaluation I			
S8	Deep Learning			
S8	Deep Learning			
S9	Deep Learning			
S9	Deep Learning applications			
S10	Deep Learning			
S10	Deep Learning applications			
S11	Deep Learning applications			
S12	Reinforcement Learning			
S12	Reinforcement Learning			
S13	Reinforcement Learning			
S13	Reinforcement Learning			
S14	Recommender Systems			
S14	Recommender Systems			
S15	Machine learning for Big Data			
S15	.5 Final review			

^{*}Dos sesiones semanales de 2 horas