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This project explores the benefits offered by syn-
thetic image datasets in industrial environments.
Thus, the necessary tools (images, labels, etc.)
will be developed to generate real and synthetic
samples. From the sets of real and synthetic sam-
ples, it was possible to test how the models trained
with synthetic samples adapt to actual working
conditions. These tests showed great performance
of both real and synthetic datasets and the most
relevant features of the images that helped the
models achieve those results.
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1 Introduction

Over the last few years, new elements from the
so-called Industry 4.0 are increasingly being in-
corporated into the industry, including collabora-
tive operations in robotics, artificial intelligence,
or IIoT. The development of these technologies
and their understanding are key to the advance-
ment of the industry itself and to the increase of
efficiency and effectiveness. Thus artificial intel-
ligence models stand out in their multiple appli-
cations such as object detection, defect detection,
predictive maintenance, etc. There are cases in
which the training of the models has been suffi-
ciently generalist for a task and it is possible to
adapt that solution to a new one, reducing the
training time or eliminating it. For training the
models, a large set of samples is required, but this
is not always possible due to the time-consuming
and complex nature of the generation of samples.
Thus, the use of datasets composed of synthetic or
mixed samples can be a great help in the elabora-
tion of these, reducing the complexity and time of

Figure 1: Project pipeline.

their creation.

This project explores the benefits offered by syn-
thetic image datasets in industrial environments
in two applications. The first one detects several
instances of an object in an image and the second
one obtains a unitary vector perpendicular to the
surface of an object shown in an image through
regression.

For this purpose, the workflow shown in Figure 1
was established. The first step was to obtain the
real and synthetic datasets. Then, object detec-
tion and regression models were trained with both
datasets. In addition, for the regression model, a
third dataset composed of the synthetic images,
after being post-processed in a generative adver-
sarial network that resembles the synthetic images
to the real images, was added.

The models were validated with a set of real im-
ages to demonstrate their effectiveness in actual
working environments. Also, the most relevant
features of the images, the ones that provide the
information to the model, were extracted.
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2 Related work

YOLO - The YOLO architecture was first ex-
posed in 2015 [1] and has evolved into subsequent
versions [2] [3] [4] which included features such
as classification tasks or complex architecture de-
signs. The version at the beginning of this project
was YOLOv5 [5] and is still under development.
YOLO stands out due to its speed of inference [6],
processing the image as a whole and allowing real-
time processing. The lead developers of YOLOv5
offer five pretrained models with the MSCOCO
dataset. These are the Nano, the Small, the
Medium, the Large and the XLarge. Their dif-
ferences lie in their complexity, capacity, perfor-
mance, speed, and computational load. It is pos-
sible to adapt them to specific applications with
transfer learning, saving training and validation
time, as well as a considerable amount of energy.

Regressor - Another artificial intelligence appli-
cation in the supervised learning field is regres-
sion. In Machine Learning, linear regression re-
lates the dependent variable with the independent
variables through the regression coefficients, with-
out nonlinearities in the [7] model. For deep learn-
ing applications the model includes nonlinearities
between input variables and outputs due to the
activation functions. In addition, an image can be
used as an input and CNN can be used. In this
way, numerical predictions about values related to
the images can be obtained [8] [9].

GAN - One type of neural networks are genera-
tive adversarial networks (GANs). These were in-
troduced in 2014 and seek to train 2 models whose
objectives are opposing [10]. The model G seeks to
capture the essence of the distribution of the train-
ing data to generate a sample that can exist within
that distribution. The model D, has the objective
of knowing how to differentiate between real sam-
ples and the samples generated by the G model.
The ultimate goal is to obtain a generating model
that is good enough for the discriminator model to
get its predictions right randomly, i.e. 50% of the
time. The samples that compose the distributions
can be any type of data in an n-dimensional latent
space, determining the complexity of the training.
Depending on the architecture used for G, it can
generate samples from random noise, a specific set
of values, or even an image.

CycleGAN - An application associated with the
transfer of styles between images is the CycleGAN
[11] network, where the style of a painting can be
transferred to a photo and in the opposite direc-
tion for example. The architecture presents two
generators in charge of translating the original pic-
tures to the opposite style and two discriminators
associated with each style. The loss function in-
cludes a term for the losses due to pitting a genera-
tor against a discriminator, where the Wasserstein
loss [12] [13] or the MSE provides stability to the
model. The cycle consistency loss term is added,
based on the fact that when processing an image
with one generator and processing it back with
the other, the image should remain unchanged.
To maintain the color composition of the images
faithfully, identity mapping loss is introduced.

Real datasets - There are companies dedicated
to the collection of real images for the creation of
datasets and then offer them for the development
of artificial intelligence models. Examples are the
MSCOCO dataset [14], the Youtube-8M dataset
[15] or the CelebA dataset [16]. The problem with
such images is that, for specific applications, dedi-
cated images must be generated for that problem,
a process that can be complex and costly in both
time, resources, and materials.

Synthetic datasets -As with real image datasets,
there are companies dedicated to the generation of
synthetic image datasets for specific applications
[17] thanks to graphics rendering applications and
video game engines such as Unity [18] or Blender
[19], where the aim is to make them as similar as
possible to what a real image would be.

Compare Images - In order to quantify the dif-
ferences between images one way is comparing the
pixel distributions between the 3 color layers of
the image (red, green and blue). This compari-
son presents the problem that it is possible that
the images themselves have the same amount of
each color, but they are arranged in a completely
different order. Another approach is to calculate
the Wasserstein distance, also known as the EMD
(Earth mover’s distance) [20], between them, com-
paring distributions as probability distributions.
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Figure 2: Label elements in YOLO image.

3 Dataset generation

This section describes how the different datasets
were obtained and then used in model training.
It includes an explanation of the characteristics of
the images and the labels that make up the dataset
for each model, according to the requirements.

3.1 YOLO dataset

For the YOLO dataset, the coordinate base of an
image is in the pixel located in the upper left cor-
ner of the image. From there, each pixel to the
right adds one unit on the x-axis and each pixel
down adds one unit on the y-axis. To standardize
the measurement, all coordinates will be relative
to the image size, being bounded between 0 and
1.

When training the model, it is necessary to define
the classes of the objects to be classified and enu-
merate them in a configuration file. Each number
in the configuration file will be the number to be
assigned in the image label. Images do not need to
have a specific dimension or a predetermined num-
ber of channels since they will be adapted later to
be processed by the model. Each label consists
of the location of the object in the image, defined
by the center and size of the bounding box that
frames it, and the class of the object itself. Each
image will have a text file with the correspond-
ing labels. An example of a labeled image and its
labels can be seen in the Figure 2 and Figure 3.

The content of each line of the text file must rep-
resent a complete label with the following values
separated by a blank space:

Figure 3: Text file with YOLO labels.

1. Object class index.
2. Center of the bounding box at the x-coordinate.
3. Center of the bounding box at the y-coordinate
4. Width of the bounding box at the x-coordinate

of the image.
5. Height of the bounding box at y-coordinate of

the image.

In this project, color images were used, with dif-
ferent resolutions, with a single class. An example
of this type of images can be seen in the Figure 4.

Figure 4: YOLO training sample.

3.2 Regression dataset

First, the point of interest from which we want to
obtain the normal vector and the basis of coordi-
nates of the image (X,Y) and the vector (u,v,w)
were defined. These are shown in the Figure 5.

The input image is colored and has a resolution
of 224x224 pixels. It will only be possible to ex-
tract one complete normal vector for each image,
resulting in only one label per image. The labels
will all be stored in a single text file like the one
shown in Figure 6.

The header of the file shows the content of each
column, which are:

• Name: Name of the file.
• X: x coordinate of the point of interest.
• Y: y coordinate of the point of interest.
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Figure 5: Regression basis of coordinates.

Figure 6: Regression labels file.

• U: u component of the vector.
• V: v component of the vector.
• W: w component of the vector.

Despite adding the values of the coordinates x and
y, in this project, they will not be used and it is left
for a future iteration the development of a model
capable of obtaining these values too.

3.3 Real dataset

An Intel RealSense L515 [21] camera was used to
capture the images, accompanied by an illumina-
tion system consisting of LED spotlights to main-
tain lighting conditions as constant as possible.

To obtain the necessary measurements and the
images, the process was automated using a rudi-
mentary object detection algorithm making use of
color filters and performing the appropriate oper-
ations to obtain the bounding boxes. In addition,
a Universal Robots UR3e [22], robotic arm was
used to move the piece in the image and obtain the
measurements of the vector normal to the surface.

The infrastructure for this process consisted of a
working structure with the UR3e robot at the cen-
ter. A 3D part was designed and printed to be
mounted on the robot and on which the part of in-
terest would be attached. The photo was captured
from the upper view of the working environment.
Both the schematic and the result of the design in

the real environment are shown in Figure 7.

(a) Schematic (b) Real scenario

Figure 7: Image capture infrastructure.

The algorithm to capture the images and label
them is shown in Figure 8 and is detailed below.

The system starts by establishing the connection
to the camera and the robot. Then, the first axis
and the wrist axes of the robot are moved to ran-
dom positions within a range, covering as many
positions as possible. An image is captured with
the camera and the measurement of the vector
normal to the TCP of the robot, which is equal
to the one of interest, is obtained. A color filter
is used to extract the label for the object detec-
tion model. The measurements of the bounding
box will be adjusted so that the width and height
of the bounding box have a ratio of 1:1. The la-
bel and image for the object detection dataset are
completed. For the regressor, the remaining step
is to crop the image obtained by the camera in the
area defined by the bounding box. The process
continues by moving the robot to a new random
position and repeating the cycle as many times as
necessary.

Figure 9 shows examples of one sample of the im-
ages obtained for each dataset.

3.3.1 Object detection dataset modifica-
tions

As the pretrained models are really powerful, in
order to take advantage of their full capacity and
pose a suitable challenge, it was decided to alter
the images of the obtained dataset. Since in this
project, there is only one object of a single class,
the classification task is left uncovered. Therefore,
we went from having one piece per image to having
between one and 4 pieces per image with their cor-
responding labels on a homogeneous white back-
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Figure 8: Image capture and labeling process.

(a) Object detection (b) Regression

Figure 9: Real datasets samples.

ground equal to the one captured by the camera in
the original images. Figure 10 shows an example
of the final result.

Figure 10: Object detection real dataset sample.

3.4 Synthetic dataset

The generation of this dataset was developed as
an automated process in which, starting from a
CAD model of the part, the Blenderproc tool [23]
was used to obtain samples of both the object de-
tection model and the regression model. A sce-
nario was modeled consisting of a box in which
numerous samples of the parts in different posi-

tions would be generated and a view from which
an image would be rendered. This scenario al-
lows complete control of the positions and orien-
tations of the parts, unlike the real scenario, and
allows taking more advantage of the image gener-
ation capacity and testing the limits of the devel-
oped model to a greater extent. The limitation in
this case was computational time. The higher the
resolution of the output images, the more compu-
tational resources and time it required. However,
this is still slightly less than the full processing
time of the real images.

Figure 11 shows samples obtained in this process.
They are not exactly the same as the images ob-
tained with the camera in real conditions and some
differences between these and the real ones are re-
markable.

(a) Object detection (b) Regression

Figure 11: Synthetic datasets samples..

3.5 Generative dataset

Due to the differences between the real and syn-
thetic images, a third dataset was developed try-
ing to increase the similarity between them. A
GAN based on CycleGAN was trained to trans-
fer the style of the real images to the synthetic
ones. The first trainings were performed with the
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original architecture.

Figure 12 shows the curves of the loss values of the
generator and the discriminator throughout the
training. The loss associated with the generator
decreases correctly up to a limit that it did not
manage to overcome, possibly a local minimum.
On the other hand, the loss associated with the
discriminator increases slightly as the generator
learns to generate images more similar to the real
ones.

Figure 12: GAN Loss with original architecture.

It is worth noting that in the first trainings the
generation of artifacts from a certain point in the
process was observed. An example of this case can
be seen in the Figure 13.

Figure 13: Artifact in generated sample.

To prevent these artifacts, the network was modi-
fied to implement changes that were introduced in
StyleGANv2 [24] based on suppressing the batch
normalization and convolutional layers by demod-
ulated convolutional layers in the generator avoid-
ing abrupt changes in the weights that may cause

artifacts.

The loss curves associated with the new architec-
ture are shown in Figure 14. It is possible to
appreciate an evolution like the previous training
and a sign of overfitting in the generator model
from epoch 200 onwards.

Figure 14: GAN Loss with modified architecture.

The problem of generated artifacts was solved.
However, it was necessary to train with a lower
learning rate and for a longer time. An example
of the new images generated can be seen in the
Figure 15.

Figure 15: Generated sample without artifacts.

All the architectures used can be seen in Annex
B.

4 Object detection

This section shows the training methodology of
the models for the detection and localization of
objects in images. We started with the pre-trained
YOLO Nano, Medium, and Extra large models by
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Figure 16: YOLO train losses.

freezing the backbone weights. Once the training
was completed, an unseen data set of the models
was used to perform inference on the models and
evaluate them.

The code for the train was extracted directly from
the Ultralytics YOLOv5 repository on Github [5],
adding some modifications on the validation code
to obtain certain metrics that were extracted in
the train. The modifications added are detailed
in Annex A.

4.1 Trainings

The results of all the trainings developed for the
object detection and localization model with the
real dataset and with the synthetic dataset are
presented in Figure 16.

Regarding the curves of the Nano models, it can
be seen that the model trained with the real dataset
achieves a lower loss as a whole. In addition, it can
be seen that the values of the validation losses are
lower than those of the training set due to the fact
that in the training phase, the pictures are slightly
modified by data augmentation techniques.

The curves of the Medium models curves show
similar results to those of the Nano model. The
real set has lower losses and validation has lower
values than the training set. However, when the
model has learned enough we see how the results
of the training and validation set approach each
other.

Regarding the curves of the Extra Large models,
during these trainings, train, and validation losses,
as well as with real and synthetic model losses, are
closer than in the previous cases. The models have

higher capacity and can learn more complex cases.

The models trained with the real images present
better loss values than the models trained with
the synthetic images. On the other hand, it can
be seen that as the complexity of the model in-
creases, the results improve. Finally, in the Fig-
ure 17, the values of precision, recall, mAP0.5 and
mAP0.5:0.95 of the models throughout the train-
ing sessions are shown. In this case, no difference
is seen between the models trained with different
images. However, comparing the models with re-
spect to their complexity improves the different
performance metrics as the model complexity in-
creases.

In Figure 18 it is possible to observe the predic-
tions for two stages of the training in both datasets
filtering the result to those predictions in which
the model assigns a score of more than 0.5 to
the obtained bounding box. By changing the ac-
ceptance threshold it is possible to obtain more
bounding boxes than desired and it is a parame-
ter to be adjusted during the model execution.

4.2 Evaluation

After training and validating the models, they were
evaluated against a dataset of real images. For all
inference processes in this dataset, a confidence
threshold of 0.5 was set and predictions were lim-
ited to 10 per image.

The values of the performance metrics and the
losses generated for the real image models can be
seen in Table 1. On the other hand, the metrics
for the synthetic models can be seen in Table 2

In both cases, the metrics improve the greater the
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Figure 17: YOLO models performance metrics.

(a) Real dataset (b) Synthetic dataset

Figure 18: YOLO predictions.

complexity of the model. However, they do not
represent a large improvement. This results in
the fact that if moving to a real production en-
vironment, the Nano model should be used as it
has much faster inference times and requires less
computational power.

Models trained with real images give better results
than those trained with synthetic images. How-
ever, this does not imply discarding this practice
because the models trained with synthetic images
present a great performance against the evaluation
dataset composed of real images. This indicates
that with a sufficiently faithful approximation of
reality, the model is able to learn features from
the images that help it to translate to a real envi-
ronment.

Test metrics real dataset models
Metric Nano Medium Extra Large

Precision 0.964 0.962 0.963
Recall 0.849 0.860 0.858
mAP0.5 0.921 0.926 0.925

mAP0.5:0.95 0.916 0.919 0.920
Box loss 0.058 0.041 0.037
Obj loss 0.117 0.092 0.090

Table 1: Test metrics for real image models.

Test metrics synthetic dataset models
Metric Nano Medium Extra Large

Precision 1.000 1.000 1.000
Recall 0.824 0.822 0.824
mAP0.5 0.850 0.849 0.857

mAP0.5:0.95 0.850 0.849 0.855
Box loss 0.271 0.265 0.243
Obj loss 0.318 0.426 0.305

Table 2: Test metrics for synthetic image models.
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5 Regression

This chapter describes the methodology for train-
ing the regression model to obtain the normal vec-
tor to a surface of interest. Once the trainings
were completed, the models were evaluated with
a dataset of real images.

The training and evaluation code, as well as the
model architecture, are own developed. In addi-
tion, features were added to the codes to be able
to visualize saliency maps with model attention
areas and relevant image details.

The architecture of the convolutional network can
be seen in the Annex B. It takes as input a 224-
pixel color square image and is processed by a se-
ries of convolutional layers with ReLU activation
functions and a max pooling layer. After three
convolution layers, it is processed by a series of
dense layers producing 3 output values. To ensure
that the output is a unit vector these values are
normalized.

5.1 Loss function

To compare two vectors A and A′ with compo-
nents u, v, w each one, the difference between them
results in a third vector with 3 components that
represent the difference between the initial com-
ponents, the degree of error between the vector
predicted by the model and the real vector. To
implement it as a loss function it must be formu-
lated as a single value. Therefore, one solution is
to obtain the modulus of the previous operation,
the distance between the two vectors. However,
the ability to evaluate the components of the vec-
tor separately is lost. The goal now is that the
distance between the two vectors is 0 and there-
fore, the actual label of the images is 0. Applying
this form of error to all the vectors obtained from
a batch of N images and averaging results in the
Ecuation 1 which is equals to the MSE function.

Loss =

∑N
i (ui − u′

i)
2 + (vi − v′i)

2 + (wi − w′
i)

2

N
(1)

5.2 Trainings

The results of the training performed on the real, syn-
thetic and post-processed dataset in the GAN are pre-
sented in Figure 19, Figure 20 y la Figure 21

The first training developed was with the real image
set. This consisted of 300 images which were divided
into a training and a validation set with a ratio of 80%
and 20% respectively. The value of the loss function,
shown in Figure 19a, is reduced to almost exactly 0.
Figure 20b shows how the model learns to look for in-
formation on the contour of the part and its shadows,
indicating the relevance of these in the image, while
the interior is practically ignored. Figure 21a shows a
sample of the real vector and the one predicted by the
model when processing an image. For the evaluation
process, the models with the best performance against
the validation set were studied.

The next training developed was the synthetic image
set. This consisted of 633 images which were divided
into a training set and a validation set with a ratio of
80% and 20% respectively. Figure 19b shows how the
value of the loss function is reduced to almost 0. Figure
20d shows how the model focuses on the part contour,
interior details, and its shadows, indicating, the rel-
evance of these features. Compared to the previous
case, it has a more general perspective of the image
and not of a specific area. Figure 21b shows both the
real vector and the one predicted by the model for the
same image. For the evaluation process, the models
with the best performance against the validation set
were studied.

The last training set developed was with the synthetic
image set with the added GAN postprocessing.
Like the previous one, this consisted of 633 images that
were divided into a training and a validation set with
a ratio of 80% and 20% respectively. Figure 19c shows
the curves with the loss function throughout the train-
ing and how it reduces to almost 0. Figure ?? shows
how the model learns to focus on part details, the part
outline and its shadows, indicating, again, the rele-
vance of these in the image. However, compared to the
previous cases, it can be seen that it has a more general
perspective of the image with respect to the real image
model, like the synthetic image model, but still main-
tains attention to some particular areas. Figure 21c
shows both the actual vector and the one predicted by
the model for the same image. For the evaluation pro-
cess, the models with the best performance against the
validation set were studied.

5.3 Evaluation

Finally, the three trained models were confronted with
a dataset they had never seen before. This dataset
consists of a set of 100 real images. In this way, the
generalization capability of the models would be tested
against a real environment.
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(a) Real. (b) Synthetic. (c) GAN.

Figure 19: Regression train losses.

(a) Real image (b) Real saliency map (c) Synthetic image (d) Synthetic saliency map

(e) GAN image (f) GAN saliency map

Figure 20: Saliency maps for the trainings.

(a) Real. (b) Synthetic. (c) GAN.

Figure 21: Regression training results samples.
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(a) Real. (b) Synthetic. (c) GAN.

Figure 22: Regression test losses.

5.3.1 Test losses

Figure 22 shows the values of the loss function when
pitting the best models of the validation set against
the evaluation dataset. The real model improves as
the epochs increase. This is contrary to what happens
with the models of the other two image types where the
value of the losses increases or even oscillates. Further-
more, for these image types, the models that perform
best in the evaluation set are the ones that were trained
less. For the rest of the evaluation, the models consid-
ered were the last model trained with real images and a
model trained with few epochs of those obtained with
the training of synthetic images and postprocessed im-
ages.

5.3.2 Atention areas

Figure 23 shows the saliency maps obtained from the
three models when processing the same test image.
The saliency map of the real image model is very sim-
ilar to the one obtained during its training, it does not
pay much attention to the part details. However, the
other two differ more from those obtained during train-
ing, with a higher amount of noise. The post-processed
image model has a greater similarity to the one ob-
tained previously and, in addition, it is more similar to
the one obtained with the real image model, focusing
the attention on the contour of the part. Moreover,
in the training images of the real dataset, the textures
of the part are generally not visible. However, in the
images of the other datasets, more details of the part
can be seen and the models learn to obtain information
from the part as well.

5.3.3 Prediction errors

Figure 24 shows the error distributions obtained by
processing the complete evaluation dataset with the
three models. The figure shows the error expressed
as the angle of difference between the actual and the
predicted vectors against the vertical projection of the
actual vector. The real images model has the lowest

errors and the lowest variance of the 3 models, serv-
ing as a reference for the other two, which are similar.
While the synthetic image model achieves slightly lower
errors, the post-processed image model has a much
lower variance. This can mean that the synthetic im-
age model is more random and unpredictable, whereas
the other can be tuned to reduce the errors it already
exhibits.

6 Conclusions

Through automation, a dataset of 400 real images was
generated. To achieve this, resources and time had
to be invested in the design of the image capture in-
frastructure, the design and printing of 3D parts to
manipulate the object of interest, planning, the devel-
opment of the dataset generation algorithm, and finally
the generation of the dataset.

Using BlenderProc as the rendering software, a syn-
thetic image dataset was generated from a 3D model of
the object of interest. To achieve this, it was necessary
to learn how to manipulate the rendering software and
design the virtual image capture scenario. It does not
consume as many physical resources as those needed for
the generation of the real dataset, but it requires high
computational power to achieve sufficiently low gener-
ation times. Therefore, without a GPU with sufficient
resources, this method would not be feasible. In this
study, an NVIDIA GeForce RTX 2080 [25] GPU was
available and it offered better image generation times
than those of the real imaging method.

Due to the differences between synthetic and real im-
ages, a dataset composed of synthetic images postpro-
cessed by a GAN was generated. The GAN would re-
semble the real ones by transferring features such as
shadows or illumination. Time was consumed training
the model and modifying the architecture to achieve
the expected results. However, in a production envi-
ronment, this process has sub-second inference times
and the bulk of this resource is consumed training the
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(a) Real (b) Synthetic (c) GAN

Figure 23: Saliency maps from test.

(a) Real (b) Synthetic (c) GAN

Figure 24: Test errors.

GAN. It requires a high computational load and there-
fore requires the use of a sufficiently powerful GPU.

In the object detection and localization problem, the
models trained with real images performed better than
the synthetic image models in the evaluation. This
was an expected result. What is remarkable about this
study is that despite being worse, the models trained
with synthetic images presented a great performance
against the evaluation set. In addition, for the problem
at hand, the YOLO Nano model was sufficiently com-
plex to provide correct predictions in reduced times.

In the regression problem, the model trained with real
images performed better than those trained with syn-
thetic or postprocessed images against the evaluation
set. The synthetic image model and the post-processed
image model performed well in the real environment
when they had not been trained for a prolonged period
of time. It could be seen that the attention areas of
the post-processed image model were more similar to
those of the real image model than those of the syn-
thetic image model, demonstrating that they learned

in a similar way. While the real image model focused
attention on the part outline and shadows, ignoring
the interior possibly due to lack of textures, the other
models also extracted information from it. However, as
they had less information from the interior of the part
when facing real images, their performance was worse.
Finally, the variance of the errors in the post-processed
image model is much lower than that of the synthetic
image model and resembles the real errors.

The saliency maps exposed that how shadows and im-
age illumination were key aspects in the images, and,
therefore, resembling these conditions in a synthetic
environment would benefit the resulting model.

To sum up, a model will give the best results the more
faithful the training data set is to the production en-
vironment data set. Models trained with real images
will always give better results in the production envi-
ronment. However, the performance of the synthetic
models, even if somewhat worse, was similar and con-
siderably good. If the same conditions can be achieved
in a virtual environment as in the real environment, it
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is an option to consider considering the resource and
time savings it presents. If they cannot be achieved
directly in a virtual environment, the transfer of styles
by means of a GAN offers a possibility to increase the
similarity of the conditions with which the synthetic
model can be improved.

7 Future development

It is proposed to continue and evolve this study through
the following ways:

• Evolve the regression model architecture increasing
its complexity and making it deal with images of
different resolutions.

• Evolve or change the GAN architecture to a diffu-
sion model that transfers the style of real images or
specific lighting conditions.

• Pretrain synthetic models so that they learn to pay
attention to the same areas as the real model.

• Transfer learning from one model trained with syn-
thetic images to another to be trained with real
images for less time.

• Mix real and synthetic image datasets to explore
the proportion of real and synthetic images needed
to perform well in the real production environment.
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A YOLO code modifications

The following are the modifications made to the orig-
inal Ultralitycs YOLO code to show the value of the
loss functions in the validation script.

In val.py the following lines get the loss values [lines
212-214 on GitHub]:

i f compute loss :
l o s s += compute loss ( t ra in out , t a r g e t s ) [ 1 ]

However, compute_loss must be initialized before the
for loop for the batches. To do that, import ComputeLoss
from utils.py and pass model.model as the argu-
ment. Inval.py model is a distributed object that
raises an error if it is not done like this. Modify lines
191-198 of the original file, the ones that define the
progress bar and add the compute_loss initialization
and the losses to the progress bar.

s = ( ’%22s ’ + ’%11s ’ ∗ 9) % \
( ’ Class ’ , ’ Images ’ , ’ I n s tance s ’ , ’P ’ , ’R ’ , ’mAP50 ’ ,
’mAP50−95 ’ , ’ b ox l o s s ’ , ’ o b j l o s s ’ , ’ c l a s s l o s s ’ )

tp , fp , p , r , f1 ,mp,mr ,map50 , ap50 ,map = 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,
0 .0

dt = P r o f i l e ( ) , P r o f i l e ( ) , P r o f i l e ( )
l o s s = torch . z e ro s (3 , dev i ce=dev i ce )
j d i c t , s ta t s , ap , a p c l a s s = [ ] , [ ] , [ ] , [ ]
c a l l b a ck s . run ( ’ o n v a l s t a r t ’ )
pbar = tqdm( dataloader , desc=s ,

bar format=’{ l b a r }{bar :10}{ r ba r }{bar :−10b} ’ )

compute loss = ComputeLoss (model . model )

Now the variable loss stores the 3 losses accumulated
with each batch. Where the for loop ends the get loss
lines were added before printing the results [281-285 of
the original file]:

# Get Loss
box l o s s=l o s s . cpu ( ) . numpy ( ) [ 0 ] ∗ ba t ch s i z e / len ( data loader )
o b j l o s s=l o s s . cpu ( ) . numpy ( ) [ 1 ] ∗ ba t ch s i z e / len ( data loader )
c l s l o s s=l o s s . cpu ( ) . numpy ( ) [ 2 ] ∗ ba t ch s i z e / len ( data loader )

# Prin t r e s u l t s
pf = ’%22s ’+’%11 i ’∗2+ ’%11.3g ’ ∗7
LOGGER. i n f o ( pf%( ’ a l l ’ , seen , nt .sum( ) ,mp,mr ,map50 ,

map, box lo s s , o b j l o s s , c l s l o s s ) )
i f nt .sum( ) == 0 :

LOGGER. warning ( f ’WARNING: no l a b e l s found in { task}
set , can not compute metr i c s
without l a b e l s ’ )

Multiplying by the batch size and dividing by the dat-
aloader length it results in the average loss per image as
the loss items are the total losses accumulated during
the processing of the whole dataset.
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B Model architectures

Figure 25: GAN generator architecture.

Figure 26: GAN residual block architecture.
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Figure 27: GAN discriminator architecture.

Figure 28: Regression model architecture.
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