

 1

26/08/2023

Use of neural networks to automate
administrative dossier processing

Author: Ortega Núñez, Daniel

Supervisor: Chousa Arza, Brais

Collaborating Entity: PricewaterhouseCoopers Asesores de Negocios S.L.

ABSTRACT This paper presents the design and development of a first version of an automatic

documental review system based on object detection techniques using neural networks and its

combination with Optical Character Recognition (OCR). In this first version, the system focuses on the

detection and verification of “Números de Identificación Fiscal” (NIF) or “Número de Identidad de

Extranjero” (NIE) in legal representation documents. To achieve this detection, an architecture based on

the YOLOv8 model has been implemented. The developed solution has been tested to evaluate the

accuracy of the detection model, the execution times, and the validation threshold, from which results

have been obtained showing that the system is able to detect and verify NIF or NIE accurately within the

representation templates with which the model has been trained, and obtaining adequate execution times

to handle a significant volume of dossiers.

INDEX TERMS YOLO, OCR, Artificial intelligence, Dossiers, Neural network, CNN, Document

review, Legal representation.

I. INTRODUCTION

The documental review is a fundamental process in the

administrative dossier processing. This process is mainly

performed manually by document reviewers, which can be

difficult and susceptible to errors, especially in

environments with a high volume of dossiers. This manual

aspect of the document review process can lead to an

accumulation of dossiers due to the time required for this

review, which can cause specific problems in this type of

procedure, such as: delays in the resolution of dossiers,

errors in the document review, or a possible increase in

the cost of the staff in charge of the document review.

This problem leads to the need to find a solution to

automate document review, reducing the time and errors

associated with manual review. To this end, we explore

the integration of object detection models in digitized

documents and the application of OCR to verify the

validation of the document and, therefore, the applicant's

compliance with the requirements.

In summary, this article addresses the need to optimize the

document review process in administrative procedures

through automation, presenting a technological approach

that integrates object detection techniques and OCR for

document verification, specifically for legal representation

documents.

II. PROJECT DEFINITION

The main objective of the project is to design and implement

a solution to automate the document review in administrative

documents of an existing platform, specifically it will focus

on the review of the document that allows the accreditation

of legal representation. For this purpose, in the first instance,

a version of the object detector is developed to identify and

validate the NIF/NIE in the corresponding document,

providing a technological alternative to improve the speed

and accuracy in the accreditation of legal representation.

To carry out this development, the final system must have

different essential requirements in order to confirm the

validity of the solution provided:

i) Detection of regions of interest: The system must be able

to detect the position and area of the information of

interest in the documents.

ii) Verification of the information detected: Once the

information in the document has been detected, it must

pass through a verification process to confirm its

2

exactitude, which implies comparing the information

extracted by the OCR with the actual values present in

the dossier.

iii) Document format flexibility: The system must be able to

handle different types of documents and formats,

adapting to variations in legal representation documents.

iv) Integration with platform: The system must be designed

in such a way that it can be easily integrated with the

existing document review platform, without interrupting

or affecting the current workflow.

v) Transparent results: The system must provide clear and

detailed results, including information about the regions

of interest detected, object detector and OCR confidence

scores, and the verification decision, to be fully

transparent about the decisions made.

vi) Scalability potential: The solution must be scalable to

handle a considerable volume of documents and

dossiers, with reasonable processing times.

Based on these requirements, a solution can be designed to

reduce the manual workload, minimize human errors, and

speed up the document review process in administrative

scenarios.

III. SYSTEM DESCRIPTION

The designed solution uses as main technologies a neural

network based on YOLO to locate the fields of interest of

the document (trained to detect NIF/NIE), and OCR to

digitize the detected information and compare it with the

real information of the file.

To detail the operation, it is necessary to start by

describing the tasks performed to prepare the model used

in the solution:

A. DATA COLLECTION AND ANNOTATION

First of all, in order to carry out the training of the data

detection model, it is necessary to create a training

dataset. In this case, as it is going to be trained for a

particular set of objects (NIF/NIE detection), a dataset had

to be developed manually from templates of the legal

representation document of the existing platform.

From this dataset, it is necessary to label the positions of

the fields of interest within the image, in other words, the

coordinates where the detector model should find that

field. Therefore, the location of the NIF/NIE in the used

templates of the dataset was manually labeled for the

specific casuistic of the project. For this, the manual

annotation tool "Computer Vision Annotation Tool

(CVAT)" was used, which allowed drawing bounding

boxes around the NIF/NIE on the image and stored the

coordinates of these boxes. When exporting the labels, the

CVAT allows to use a format suitable for training the

YOLO model.

It is worth mentioning that these labels include the

coordinates (x, y) of the upper left corner and lower right

corner of the bounding box around the NIF/NIE, and the

class number of the object (necessary in case of detecting

several objects).

B. YOLOv8 OBJECT DETECTION MODEL

The Ultralytics YOLOv8 model was selected as the basis

for this project due to its ability to perform object

detection with high accuracy and efficiency, as well as its

large amount of documentation.

The model was configured to suit the specific

requirements of the project. To do so, from the YALM

(Yet Another Markup Language) configuration file, the

architecture of the model is defined. In this case, the

YOLOv8n version was selected to speed up training, since

it is the network with the fewest parameters.

During the training process, the model is dedicated to

adjust its weights and internal parameters to learn how to

detect the classes of objects indicated in the images. The

training was performed iteratively over 100 epochs, and

multiple times for different dataset sizes. Once the

training is finished, the last model, and the best model, is

saved. The model used was a model trained from Google

Colab, with a set of 300 images and only detecting one

object class (NIF).

Figure 1: Number of parameters depending on the model.

3

In addition to the main technologies mentioned above, the

developed system has several image and data treatment

processes. A general scheme of the system is shown

below and all the processes that are carried out during the

execution of the solution are detailed in order:

A. LOADING DOSSIER INFORMATION

The first stage of the process involves the collection and

preparation of the necessary dossier data. In this test

version, no direct communication with the database has

been implemented, a data structure called "data_mapping"

has been created containing the information of the test

dossiers to be processed. This information is previously

introduced and includes for each document name: the

dossier identifier, the applicant's and representative's

NIF/NIE, as well as the associated file addresses. In

addition, the documents to be processed will have to be

uploaded to the selected folder.

B. DOCUMENT TRANSFORMATION

To enable automated processing, a process of converting

PDF documents to images is carried out using the

pdf2image library.

This is done for all documents to be analyzed at the same

time. The list of all documents with PDF extension within

the input folder is obtained, and all found documents are

transformed to images. These images are stored with the

same name in the same location as the transformed

documents.

C. DETECTION OF REGIONS OF INTEREST IN THE

DOCUMENT

Once the documents are converted to images, these

images are processed one by one using the trained YOLO

model. This model, trained to detect NIF/NIE, identifies

the regions that it considers that store this object:

If the NIF object is found in the processing, the

information of the coordinates of the contour box of the

object is used, and the image is cropped twice, for the

detection of the NIF of the interested and for the NIF of

the representative, saving them in the folder indicated as

"output". In case no object is detected, a message detailing

the event is displayed, and a negative verification is

exported as the result of this processed document.

D. IMAGE PROCESSING AND OCR

Once the region of interest containing the NIF of an image

has been identified, the text extraction process is carried

out in several steps to guarantee an accurate and reliable

reading.

First, as discussed above, the images are cropped from the

coordinates of the objects detected by the neural network.

These cropped images must be processed using the OCR,

but before this is done, they are processed to facilitate the

reading of the OCR and improve the accuracy with which

the information is extracted from the images.

This treatment consists of transforming the image to

grayscale, and then applying a binary threshold to

segment the image in black and white, where the pixels of

the image that exceed the indicated threshold value of the

scale become white, and those below become black. In

this way, the detection of image edges and details is

Figure 3: Document processed.

Figure 2: System design.

4

improved, highlighting the characters, and avoiding some

possible OCR reading failures due to the image quality.

Once the image has been treated, it is processed using

OCR. Specifically, the EasyOCR library has been used for

this character recognition task, extracting with it the

contents of these images, in other words, the fields of

interest (NIF of the interested party and representative) in

string format.

It is worth mentioning that this process also provides a

confidence score for each text extraction, which could be

considered for the document validation decision.

E. TEXT PROCESSING

The next step of the system is to process the text extracted

from the OCR. The aim is to ensure that the text maintains

the usual NIF/NIE format, avoiding reading errors when

confusing similar characters, or even the introduction by

the user of special characters that do not maintain the

format stored in the database.

To do this, first of all, all letters in the text are converted

to capital letters, and symbols such as "-" or "." are

eliminated. Secondly, all texts are processed by a function

developed, which controls the specific formats of the NIF

and NIE.

 The formats of both NIF and NIE are shown below to

understand the function:

Taking these formats into account, the purpose is to

control the correspondence of the characters in relation to

numbers or letters to a certain point by means of the

commented function. For this purpose:

- The first character can be a number or a letter

depending on whether it is a NIF or NIE.

- The intermediate characters must always be

numbers.

- The last character must always be a letter.

Following this guideline, dictionaries with similar

numbers and letters that OCR may confuse have been

declared, to be modified with this formatting criteria as

appropriate. The controlled characters are shown below in

Table I:

TABLE I

MONITORED CHARACTERS

LETTER/

CHARACTER
NUMBER

O 0

I 1

J 3

A 4

G 6

/ 1

Z 2

S 5

F. CHARACTER STRING COMPARISON

Once the text processing is finished, it is possible to

compare with greater certainty the information extracted

from the OCR with the real one. So, using the difflib

library to compare the similarity of characters, a similarity

coefficient is obtained. This comparison is carried out

character by character, in other words, the first character

of a string is compared with the first character of the other

string, the second with the second, and so on.

Through this process, the comparison information can be

obtained from the similarity coefficient, the higher the

similarity coefficient, the more similar are the two strings

of characters.

G. VERIFICATION PROCESS

A key point is the formulation of the validation threshold,

which determines the required similarity between the text

extracted by the OCR and the actual NIF/NIE values to

consider a document revision as valid. This threshold is

based on the similarity coefficient calculated by

comparing character strings but could be further defined

Figure 4: Image treatment before

OCR.

Figure 5: NIF and NIE format.

5

from the OCR confidence score, or if available, from the

detection of other objects.

In this project, a validation threshold of 89% has been set

as a balance between strictness of validation and

acceptance of minor differences, which corresponds to

one distinct character between strings.

In situations where the similarity coefficient does not meet

the validation threshold, the system records the

verification as invalid. This allows the document

reviewers to manually verify the case without affecting

the original flow of the file.

H. RESULTS EXTRACTION

Once the similarity coefficient has been obtained and the

document validation decision has been calculated, all the

data obtained during the processing of each document is

collected. These data include: the dossier information (

identifier and real NIF/NIE), the extracted NIF/NIE, the

OCR scores, the YOLO contour box scores, the similarity

percentages, and the final verification decision.

These data are stored in a data structure called "results",

with which finally a "dataframe" of pandas will be created

to later extract them with Excel format. In Table II below

it is shown how the results table is structured, and the

different data types of each variable.

TABLE II

TABLE DESIGN FOR RESULTS

CAMPO DATA TYPE DESCRIPTION

id_expediente UUID Unique dossier identifier

applicant_nif VARCHAR
NIF/NIE of the interested coming

from the database

representative_

nif
VARCHAR

NIF/NIE of the representative

coming from the database

applicant_extra

cted_nif
VARCHAR

NIF/NIE of the interested from the

extraction of the document

representative_

extracted_nif
VARCHAR

NIF/NIE of the representative from

the extraction of the document

applicant_box_

confidence
FLOAT

Score of detection by the YOLO

model for the NIF/NIE of the

interested

representative_

box_confidenc

e

FLOAT

Score of detection by the YOLO

model for the NIF/NIE of the

representative

applicant_ocr_

score
FLOAT

Reliability of the reading by the

OCR of the interested NIF/NIE

representative_

ocr_score
FLOAT

Reliability of the reading by the

OCR of the representative's

NIF/NIE

applicant_simil

arity
FLOAT

Percentage of similarity between the

extracted NIF/NIE of the interested

and the one in the DB

representative_

similarity
FLOAT

Percentage of similarity between the

extracted NIF/NIE of the

representative and the one in the DB

verification_de

cision
BOOLEAN

Decision for the verification of the

document based on the results

obtained

It is worth mentioning that this data may be loaded into

the platform's database when deemed appropriate,

showing users the corresponding interface in each case.

IV. RESULTS

This section presents the results obtained after the

implementation of the automatic document review system,

analyzing the most relevant aspects of the project and

evaluating the efficiency and performance of the

developed solution.

A. YOLO EXECUTION TIMES

One of the aspects evaluated in depth is the execution time

of the YOLO model trained and used for the detection of

objects in the documents.

During this object detection phase, the YOLO model

processes each image in order to identify the NIF/NIE

positions in the document.

The execution times oscillate between 135 and 155

milliseconds per image, which are considered appropriate

times to handle large amounts of documents without

generating significant waits in the execution of the

solution.

Therefore, these values suggest that the YOLO model is

efficient and scalable to a significant volume of files,

affecting in the scale of hours for hundreds of thousands

of additional documents. It is important to note that, as

execution time is not critical for this particular project,

there is scope to employ more complex models in order to

achieve greater accuracy.

B. MODEL PERFORMANCE

Another aspect evaluated is the performance of the model

in terms of accuracy and its limitations.

6

In relation to this, the developed model can successfully

detect the NIF/NIE fields in documents based on the legal

representation template used in the training, but its

accuracy may be affected when facing different types of

documents with different formats and structures.

In the context of object detection, this means that the

model presents overfitting, and may have difficulties

detecting regions of interest in documents that do not

exactly follow the template used in training.

The overfitting of the model is a major concern, as it

affects the flexibility and adaptability of the system,

leading to the fact that, in the case of documents with

different formats, the system fails to detect regions of

interest, decreasing its accuracy drastically and reducing

the number of dossiers that can be automatically review.

As a result, the solution has a limitation in that it is not

generalizable to multiple document types without a model

retraining. However, in the specific context of the

document review platform on which the project is

focused, it is working with the defined template, so the

result obtained is valid.

C. VALIDATION THRESHOLD ANALYSIS

The last aspect evaluated in detail is the validation

threshold used to decide where the detection of a region of

interest in the digitized documents is correct or erroneous.

This is a crucial component in the document review

process, because depending on how strict the threshold is,

the number of documents validated will increase or

decrease.

When a strict validation threshold is used, that is, a high

verification threshold, the tendency is to validate only

those documents in which the extracted text coincides

more exactly with the expected values. This leads to

higher validation accuracy, as false positives are

minimized. However, this approach can also lead to a

reduced number of validated documents, as even small

discrepancies in the extracted text due to reading errors

can result in a negative validation. On the other hand,

using a less stringent validation threshold, meaning a low

threshold, increases the likelihood that more documents

will be validated. However, this may lead to a higher

number of false positives.

The choice of validation threshold should be a

compromise between the accuracy desired, and how strict

the threshold is. This should be based on an analysis of

system requirements and tolerance for validation errors.

After an iterative adjustment, a validation threshold of

89% is defined for this project. This threshold allows for

some variation in the extracted characters without

compromising the validity of the document. It is important

to note that the validation threshold is adjustable

according to the needs of the process and can be refined

according to the review requirements. Moreover,

parameters such as OCR accuracies, or even additional

parameters such as the requirement to detect other objects

through YOLO, for example signatures (if the document

does not have a signature, it will not be considered valid

regardless of the percentage of similarity of the NIFs),

could be added to this validation threshold.

V. CONCLUSIONS

This chapter presents the conclusions obtained after the

execution of the automatic document review project.

Through the definition of requirements, a functional

solution has been achieved that meets the challenges

proposed. The main conclusions are summarized below:

With the project, it has been possible to design and

develop a document review system that speeds up the

administrative dossier verification process. This system

uses an object detection based on YOLOv8, which has

proven to be effective in identifying regions of interest

containing NIF and NIE, which could be expanded to new

objects. In addition, OCR technology has been

incorporated to extract information from the images, and a

validation threshold has been established that determines

the required similarity between the extracted values and

the real values.

One of the main challenges of the project was the

overfitting of the detection model, which limits its ability

to adapt to different document formats. Although this

problem does not have a major impact on this project, it is

essential to consider it if a more versatile solution is

needed. In addition, it should be considered that the

detection model only identifies NIF and NIE, so a

complete document review would require the detection of

additional fields such as names or signatures.

In addition, automating verification reduces manual

workload and minimizes human error, resulting in a faster

and more reliable process. This improves the experience

of both the reviewers and the applicants of the dossiers.

Despite the identified limitations, the solution meets the

defined requirements, and it is possible to integrate the

results easily into the existing document review platform

when required.

7

In summary, the project has demonstrated the viability of

implementing an automated document review system for

administrative dossiers. Although there are areas for

improvement, the current solution can significantly affect

the document review process and have a positive impact

on the management of administrative records.

VI. FUTURE TASKS

Opportunities for expansion and improvement have been

identified for the developed system. Below are some areas

where future work could be carried out to further optimize

the system:

i) Expand the training data set to include different types of

documents and templates, which will allow the model to

generalize better in different contexts, solving the

problem of overfitting.

ii) Use a model with a more powerful architecture, since by

using a larger volume of parameters a higher accuracy

could be obtained. This would affect the model

execution speed but has a reduced impact since it can be

performed independently from the manual review

process without interrupting it.

iii) The current solution focuses on the detection of NIF and

NIE, which meets the project objective of evaluating the

viability of the system. However, in order to achieve a

complete validation of the legal representation

document, it would be beneficial to include the detection

and validation of other fields such as signatures, which

would require a retraining of the model and adjustments

in the image processing stage.

iv) Research and implement new and more advanced OCR

technologies to improve the accuracy of character

reading. This would have a direct impact on the quality

of the extracted information and, therefore, on the

accuracy of the validation process.

v) Carry out tests in real production situations. This will

allow evaluating the solution under more realistic

conditions and collecting additional data to adjust and

optimize detection and validation parameters. In

addition, feedback from real users can provide valuable

information for future improvements.

In conclusion, a solution has been designed and

implemented to meet the objectives and requirements

defined for the project, although it is true that during its

execution, potential actions for improvement have been

identified, with which the solution could be implemented

in any type of document review platform, beyond the one

used as a reference for the project.

8

APPENDIZ I –MAIN FILE CODE

The following section show the main.py file developed for

the execution of the designed solution:

import os

from ultralytics import YOLO

import cv2

from pdf2image import convert_from_path

import easyocr

import difflib

import pandas as pd

definir funciones

def convertir_pdf_a_imagen(archivo_pdf):

 imagenes = convert_from_path(archivo_pdf,

first_page=1, last_page=1)

 nombre_archivo =

os.path.splitext(archivo_pdf)[0]

 for i, imagen in enumerate(imagenes):

 ruta_guardado = f'{nombre_archivo}.jpg'

 imagen.save(ruta_guardado, 'JPEG')

def ocr_nif(img):

 text_detections = ocr.readtext(img)

 for text_detection in text_detections:

 _, text, score = text_detection

 return text, score

def format_nif(text):

 formatted_nif = text[0]

 for i in range(1, len(text) - 1):

 if text[i] in dict_char_to_int.keys():

 formatted_nif +=

dict_char_to_int[text[i]]

 else:

 formatted_nif += text[i]

 if text[-1] in dict_int_to_char.keys():

 formatted_nif += dict_int_to_char[text[-

1]]

 else:

 formatted_nif += text[-1]

 return formatted_nif

dict_char_to_int = {'O': '0',

 'I': '1',

 'J': '3',

 'A': '4',

 'G': '6',

 '/': '1',

 'Z': '2',

 'S': '5'}

dict_int_to_char = {'0': 'O',

 '1': 'I',

 '3': 'J',

 '4': 'A',

 '6': 'G',

 '2': 'Z',

 '5': 'S'}

--

--

CARGAR MODELOS

nif_detector = YOLO('H:/TFM/best_collab.pt')

ocr = easyocr.Reader(['es'], gpu=False)

results = []

OBTENER REGISTROS DE BBDD

data_mapping = {

 'REPRESENTATIVE_LEGAL_ONE1.jpg': {

 'petition_id': '',

 'dossier_id': '',

 'applicant_NIF': '',

 'representative_NIF': '',

 'file_add': ''

 },

 'REPRESENTATIVE_LEGAL_ONE2.jpg': {

 'petition_id': '',

 'dossier_id': '',

 'applicant_NIF': '',

 'representative_NIF': '',

 'file_add': ''

 }

 # Agregar más entradas según sea necesario

}

CONVERTIR DOC A IMAGEN

input_path = 'H:/TFM/data/input'

save_path = 'H:/TFM/data/output'

Obtén una lista de todos los archivos PDF en la

carpeta

archivos_pdf = [archivo for archivo in

os.listdir(input_path) if

archivo.endswith('.pdf')]

Convierte cada archivo PDF en imágenes

for archivo_pdf in archivos_pdf:

 ruta_archivo_pdf = os.path.join(input_path,

archivo_pdf)

 convertir_pdf_a_imagen(ruta_archivo_pdf)

images = [archivo for archivo in

os.listdir(input_path) if

archivo.endswith('.jpg')]

print(images)

for image in images:

 ruta_img = os.path.join(input_path, image)

 print("-------------------------------------")

 print(ruta_img)

 data=data_mapping[image]

 # PRECEDIR CON YOLO LA POSICION DEL NIF

 detections = nif_detector(ruta_img)[0]

 if len(detections) == 0:

 print('No se encontraron NIFs')

 results.append({

 'petition_id': data['petition_id'],

 'dossier_id': data['dossier_id'],

 'applicant_nif ':

data['applicant_NIF'],

 'representative_nif':

data['representative_NIF'],

9

 'applicant_extracted_nif ':

'NOT_FOUND',

 'representative_extracted_nif':

'NOT_FOUND',

 'applicant_box_confidence': '-',

 'representative_box_confidence': '-',

 'applicant_ocr_score': '-',

 'representative_ocr_score': '-',

 'applicant_similarity': '-',

 'representative_similarity': '-',

 'verification_decision': 0

 })

 continue

 print('detecciones:')

 detection = detections.boxes.data.tolist()

 print(detection[0])

 print(detection[1])

RECORTAR NIF A PARTIR DE LA PREDICCION

 img = cv2.imread(ruta_img)

 image_name, image_ext =

os.path.splitext(image)

 new_image_name = f"{image_name}_1{image_ext}"

 image_path = os.path.join(save_path,

new_image_name)

 x1, y1, x2, y2, confidence1, type =

detection[0]

 nif1 = img[int(y1):int(y2), int(x1):int(x2)]

 cv2.imwrite(image_path, nif1)

 new_image_name = f"{image_name}_2{image_ext}"

 image_path = os.path.join(save_path,

new_image_name)

 x1, y1, x2, y2, confidence2, type =

detection[1]

 nif2 = img[int(y1):int(y2), int(x1):int(x2)]

 cv2.imwrite(image_path, nif2)

PROCESAR IMAGEN DEL NIF

 nif1_gray = cv2.cvtColor(nif1,

cv2.COLOR_BGR2GRAY)

 _, nif1_gray_th = cv2.threshold(nif1_gray,

180, 255, cv2.THRESH_BINARY)

 nif2_gray = cv2.cvtColor(nif2,

cv2.COLOR_BGR2GRAY)

 _, nif2_gray_th = cv2.threshold(nif2_gray,

180, 255, cv2.THRESH_BINARY)

OCR DEL NIF

 nif1_text, nif1_score = ocr_nif(nif1_gray)

 nif2_text, nif2_score = ocr_nif(nif2_gray)

PROCESAR TEXTO OBTENIDO

 nif1_text = nif1_text.upper().replace(' ',

'').replace('-', '').replace('.', '')

 nif2_text = nif2_text.upper().replace(' ',

'').replace('-', '').replace('.', '')

 nif1_text = format_nif(nif1_text)

 nif2_text = format_nif(nif2_text)

 print(nif1_text)

 print(nif2_text)

COMPARACION DE STRINGS (DDBB y OCR)

 similarity_ratio_applicant =

difflib.SequenceMatcher(None, nif1_text,

data['applicant_NIF']).ratio()

 similarity_ratio_representative =

difflib.SequenceMatcher(None, nif2_text,

data['representative_NIF']).ratio()

 print(f"Porcentaje de similitud interesado:

{similarity_ratio_applicant:.2f}")

 print(f"Porcentaje de similitud representante:

{similarity_ratio_representative:.2f}")

UMBRAL DE VERIFICACION

 if similarity_ratio_applicant > 0.75 and

similarity_ratio_representative > 0.75:

 verification_decision = 1

 else:

 verification_decision = 0

ESCRIBIR RESULTADOS

 results.append({

 'petition_id': data['petition_id'],

 'dossier_id': data['dossier_id'],

 'applicant_nif ':

data['applicant_NIF'],

 'representative_nif':

data['representative_NIF'],

 'applicant_extracted_nif ': nif1_text,

 'representative_extracted_nif':

nif2_text,

 'applicant_box_confidence':

confidence1,

 'representative_box_confidence':

confidence2,

 'applicant_ocr_score': nif1_score,

 'representative_ocr_score':

nif2_score,

 'applicant_similarity':

similarity_ratio_applicant,

 'representative_similarity':

similarity_ratio_representative,

 'verification_decision':

verification_decision

 })

Crear un DataFrame de pandas con los resultados

results_df = pd.DataFrame(results)

DataFrame en archivo Excel para cargar en bbdd

excel_file = os.path.join(save_path,

'resultados_nif.xlsx')

results_df.to_excel(excel_file, index=False)

10

REFERENCES

[1] Amazon S3. [Online]. Available:

https://aws.amazon.com/es/s3/getting-started/?nc=sn&loc=6&dn=1

[2] Dillon Reis, J., Kupec, J., Hong, J., & Daoudi, A. (May 17, 2023).

Real-Time Flying Object Detection with YOLOv8. Available:

https://arxiv.org/abs/2305.09972

[3] EasyOCR documentation. [Online]. Available:

https://www.jaided.ai/easyocr/documentation/

[4] EnriqueAV. (May 12, 2018). Detección de objetos con YOLO:

implementaciones y cómo usarlas. Available:

https://medium.com/@enriqueav/detecci%C3%B3n-de-objetos-

con-yolo-implementaciones-y-como-usarlas-c73ca2489246

[5] Great Learning Team. (Jul 21, 2020). YOLO object detection using

OpenCV. Available: https://www.mygreatlearning.com/blog/yolo-

object-detection-using-opencv/

[6] Hui, J. (Mar 28, 2018). Object Detection Speed and Accuracy

Comparison: Faster R-CNN, R-FCN, SSD, and YOLO. Available:

https://jonathan-hui.medium.com/object-detection-speed-and-

accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-

5425656ae359

[7] Hui, J. (Mar 18, 2018). Real-time Object Detection with YOLO,

YOLOv2 and now YOLOv3. Available: https://jonathan-

hui.medium.com/real-time-object-detection-with-yolo-yolov2-

28b1b93e2088

[8] Hui, J. (Mar 28, 2018). Understanding Region-based Fully

Convolutional Networks (R-FCN) for object detection. Available:

https://jonathan-hui.medium.com/understanding-region-based-

fully-convolutional-networks-r-fcn-for-object-detection-

828316f07c99

[9] Jifeng Dai, Yi Li, Kaiming He, Jian Sun. (Jun 21, 2016). R-FCN:

Object Detection via Region-based Fully Convolutional Networks.

Available: https://arxiv.org/abs/1605.06409

[10] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi.

(May 9, 2016). You Only Look Once: Unified, Real-Time Object

Detection. Available: https://arxiv.org/abs/1506.02640v5

[11] Joseph Redmon, & Farhadi, A. (Apr 8, 2018). YOLOv3: An

Incremental Improvement. Available:

https://arxiv.org/abs/1804.02767

[12] Portal de Ayudas del Ministerio de Economía y Competitividad.

[Online]. Solicitudes. Available:

https://portalayudas.mineco.gob.es/THD/solicitudes/Paginas/Solici

tudes.aspx

[13] Saarthi AI. (May 9, 2019). How to Build Your Own OCR.

Medium. Available: https://medium.com/saarthi-ai/how-to-build-

your-own-ocr-a5bb91b622ba

[14] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. (Jan 6,

2016). Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. Available:

https://arxiv.org/abs/1506.01497v3

[15] Ultralytics YOLOv8 Documentation. [Online]. Available:

https://docs.ultralytics.com/

[16] Visual Studio Code. [Online]. Available:

https://code.visualstudio.com/

[17] Computer Vision Annotation Tool (CVAT). [Online]. Available:

https://www.cvat.ai/

[18] OpenCV Documentation. [Online]. Available:

https://docs.opencv.org/4.x/index.html

https://aws.amazon.com/es/s3/getting-started/?nc=sn&loc=6&dn=1
https://arxiv.org/abs/2305.09972
https://www.jaided.ai/easyocr/documentation/
https://medium.com/@enriqueav/detecci%C3%B3n-de-objetos-con-yolo-implementaciones-y-como-usarlas-c73ca2489246
https://medium.com/@enriqueav/detecci%C3%B3n-de-objetos-con-yolo-implementaciones-y-como-usarlas-c73ca2489246
https://www.mygreatlearning.com/blog/yolo-object-detection-using-opencv/
https://www.mygreatlearning.com/blog/yolo-object-detection-using-opencv/
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/understanding-region-based-fully-convolutional-networks-r-fcn-for-object-detection-828316f07c99
https://jonathan-hui.medium.com/understanding-region-based-fully-convolutional-networks-r-fcn-for-object-detection-828316f07c99
https://jonathan-hui.medium.com/understanding-region-based-fully-convolutional-networks-r-fcn-for-object-detection-828316f07c99
https://arxiv.org/abs/1605.06409
https://arxiv.org/abs/1506.02640v5
https://arxiv.org/abs/1804.02767
https://portalayudas.mineco.gob.es/THD/solicitudes/Paginas/Solicitudes.aspx
https://portalayudas.mineco.gob.es/THD/solicitudes/Paginas/Solicitudes.aspx
https://medium.com/saarthi-ai/how-to-build-your-own-ocr-a5bb91b622ba
https://medium.com/saarthi-ai/how-to-build-your-own-ocr-a5bb91b622ba
https://arxiv.org/abs/1506.01497v3
https://docs.ultralytics.com/
https://code.visualstudio.com/
https://www.cvat.ai/
https://docs.opencv.org/4.x/index.html

