
 

 

 

1 

 

Abstract- Transmission Expansion Planning (TEP) is a complex problem where building a new line involves a 
long permitting process of around 10 years. Therefore, transmission expansion must anticipate the evolution of 
uncertainties particularly those derived f by changes in the capacity and location of new generating facilities. As 
it is not possible to request permits for all possible lines, priorities must be established. We develop a 
formulation to use Real Options Valuation (ROV) to evaluate the potential benefit of candidate lines and 
thereby identify priority projects. We present a feasible representation of optionality in TEP projects and 
propose a tractable evaluation of option value. The proposed technique identifies the candidate transmission 
lines with the highest potential, as well as their main value drivers. This is implemented on a realistic case study 
based on the Spanish system. 

 
Index Terms— Power Transmission, Circuit Optimization, Mathematical Programming 

I.  INTRODUCTION 
ransmission Expansion Planning (TEP), conventionally defined as the problem of “deciding which 
new lines will enable the system to satisfy forthcoming loads with the required degree of reliability” 
(Kaltenbach, Peschon, & Gehrig, 1970), is a key element of power systems strategy. As such, it has 
received considerable attention in the academic literature (Latorre, Cruz, Areiza, & Villegas, 2003). 

Despite the extensive nature of this research, the topic remains challenging in both methodology and 
practice. This is mainly due to the inevitable need for approximation methods in formulation and 
pragmatic approaches in practice. To envisage the load flow consequences of all possible sequences of 
upgrades to an existing system, over a long time horizon, with stochastic evolutions of generation 
expansion, demand and fuel prices, is a task of unmanageable dimensionality. Furthermore, from a 
welfare maximizing perspective, the joint optimization of generation and transmission expansion has 
always been difficult to handle, and even more so in an age of unbundled ownerships where economic 
efficiency is sought through pricing signals for congestion, use of system and connections rather than via 
central planning. This pragmatic framework for analysis is perhaps most evident in the initial stage of 
TEP, which is the decision to seek permits. The process of building a line usually involves a relatively 
long permitting process of up to 10 years, followed by 1-2 years of actual construction. In comparison, the 
lead times to build new power plants are generally much shorter. This means that TEP must anticipate 
generation investments. However, new generation is a key element in the valuation of transmission 
investments. Therefore, quite often transmission projects can be withdrawn when, after a long permitting 
process, forecasts have not materialized as anticipated. This makes it particularly interesting to study TEP 
from a flexibility perspective. 

Given the importance of TEP in power systems, there is a wide array of literature devoted to its 
resolution. The remaining of this section reviews concisely the main modeling options and solution 
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techniques applied to this problem. With respect to the modeling of power flows, relatively simple 
transportation models (which only take into account Kirchhoff’s First Law) reduce the computational 
requirements of the optimization (Marin & Salmeron, 1998). Linearized DC power flows or hybrid models 
(where only existing lines abide Kirchhoff’s Second Law) are the most widely applied (Binato, de 
Oliveira, & de Araujo, 2001; Pereira, Pinto, Cunha, & Oliveira, 1985). Most studies ignore losses, although 
a few take them into account either in an approximate or exact way (Braga & Saraiva, 2005; Rezende, Leite 
da Silva, & Honorio, 2009; Sánchez & Ramos, 2005). More sophisticated grid modeling options usually 
evaluate a given transmission plan rather than performing optimal transmission expansion. A 
particularly interesting example is the study of reactive power and voltages in the network. These 
considerations are usually analyzed after an expansion plan has been proposed, and any possible 
problems detected are considered for a new iteration in the planning process. 

The literature has applied a wide array of techniques to TEP, such as Linear Programming (LP) 
(Villasana, Garver, & Salon, 1985), Mixed-Integer Programming (MIP) or non-classical methods like 
genetic algorithms (Miranda & Proenca, 1998), simulated annealing (Romero, Gallego, & Monticelli, 
1995), greedy searches (Binato et al., 2001) or expert systems (Teive, Silva, & Fonseca, 1998). However, 
most of these studies do not capture the dynamic, multi-stage nature of this problem, where decisions can 
be re-evaluated in light of the revealed uncertainties. Most research works consider a static version of the 
problem (Garver, 1970). A second group develops sequential static planning, with several time horizons 
(Oliveira, Binato, & Pereira, 2007). Some others do carry out dynamic planning, although most of them 
focus on very small case studies and use heuristic methods with no optimality guarantee. Some of the 
most relevant techniques that have been applied in this context are Dynamic Programming (DP) 
(Vasquez, Styczynski, & Vargas, 2008) and metaheuristics (Romero, Rider, & Silva, 2007). Solving the 
dynamic problem is however unmanageable for realistic case studies. 

ROV studies the dynamics of individual decisions (therefore, it does not provide with a global optimal 
plan) to provide guidance on immediate decisions in an uncertain context taking into account flexibility. 
We study the option value embedded in the permitting process, something that has not been taken into 
account in the existing static or dynamic TEP approaches (it is therefore a contribution of this paper) and 
can be used to guide the decision to request permits for the construction of new lines. Although the exact 
calculation of this option value in real systems would be unmanageable, we develop an approximation 
that is simple enough to be applied to large networks as demonstrated in the case study. In addition, our 
ROV approach generates additional interesting information for decision support, such as investment 
thresholds and probabilities of investment, which will be described in this document. 

This paper is organized as follows. First, a stylized model for TEP is described in section II.  Then, 
section III.  briefly introduces ROV. Section IV.  describes the decision process of transmission expansion. 
Section V.  presents an stylized case study that demonstrates the proposed approach. After that, sections 
VI.  and VII.  describe the proposed approach. Section VIII.  applies the approximation to the stylized case 
study. The real-sized case study and its results are described in section VIII.  Finally, section X.  presents 
conclusions. 

II.  TRANSMISSION EXPANSION PLANNING 
TEP decisions are usually taken by a central planner, identified with the TSO (Transmission System 
Operator) in most regulations. This is justified by the fact that the transmission network is a natural 
monopoly, and as such has not been liberalized as, for instance, the power generation business has been. 
In addition, most works in the literature carry out centralized TEP with centralized cost-based operation, 
even when dealing with liberalized generation markets (Garver, 1970; Gupta, Shekhar, & Kalra, 2012). 
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This is due to the complexities that market modeling can bring into the problem together with the long-
term time horizons involved in the problem. The number of references that consider competitive 
generation is limited (Bresesti, Capasso, Falvo, & Lauria, 2003; Hongbo Sun & Yu, 2000). There has been 
however some work done on decentralized expansion (Cagigas & Madrigal, 2003; Contreras, 1997; 
Contreras & Wu, 2000) and the impact of coalitions (Contreras & Wu, 1999), although these works study 
specific transmission projects rather than the complete expansion plan for a given system. 

Consistently, the classical formulation of the TEP problem selects the optimal network additions that 
minimize the expected value of the sum of first-stage (investment) and second-stage (operation) costs. 
However, although the operation of the system is carried out in a centralized way, the impact of 
deregulation in generation expansion planning is taken into account by means of stochastic scenarios. 
This section presents a stylized version of the optimization model used, which omits some details such as 
the calculation of losses (which is based on a piecewise linear approximation). 

A.  Indices 

,i j : nodes 

c : cable types 

,EL CL : existing and candidate lines respectively 

t : discrete time periods considered when lines can be installed. The first period (the decision period) and 
the last period in the analysis will be represented respectively as ,D T . The time elapsed between two 

periods will be referred to as 
1 2,t t

Et . 

w
t
: possible system states (scenarios). Each scenario has different values for some of the parameters, 

specifically, the parameters that are considered uncertain. 

B.  Parameters 

2 1,t t
Df : discount factor to evaluate a future cashflow corresponding to date 

2
t  in value terms of a closer 

date 
1
t . It is calculated as 

r-
= ,1 2

1 2,
e t tEt

t t
Df . 

r : discount rate [pu] 

wtP : probability of the states. The uncertainty can be described via a scenario tree where the probability of 

a state wtP  depends on the previous state w w -=
1

( )t

t
P F . For the sake of simplicity, we will omit this in 

the notation and use wtP  when referring to this probability. 

t
Dur : duration of the considered periods [h] 

ijc
Ic : investment cost of a circuit [M€] 

w
,
t

t i
D : demand at each node [MW]

 

Pnsc : penalty for power not served [M€/MWh] 

wt
i

Gc : generation cost [M€/MWh] 
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ijc
X : reactance of a circuit [pu] 

ww w
,, ,

, , tt t
t it ijc t i

F G G : flow and generation limits respectively [MW] 

,t ijc
M : Big-M parameters 

C.  Variables 

w
,
t

t ijc
x : cumulative decision to install a candidate investment between nodes i  and j  using cable type c  at 

time t  if the state is w
t
 {0,1} 

w
,
t

t i
g : power generated at a node [MW] 

w
,
t

t i
pns : power not served at each node [MW] 

w
,
t

t ijc
f : flow through a circuit [MW] 

wq
,
t

t i
: voltage angles at nodes [rad] 

D.  Objective function 

The objective function minimizes the sum of investment and operation costs: 

( )w w w

w=

+åå ,
min t t t

t

T

t D t t
t D

P Df invc opc         (1) 

E.  Constraints 

Investment constraints: 

( )w w w -

-
Î

= -å 1

, (t 1),
t t t

t ijc t ijc ijc
ijc CL

invc Ic x x          (2) 

w w -

-³ 1

, ( 1),
t t

t ijc t ijc
x x            (3) 

Operation constraints, describing generation cost and power not served penalties: 

w w w w= +å , ,
( )t t t t

t t t i i t i
i

opc Dur g Gc pns Pnsc         (4) 

Kirchhoff’s laws are the physical laws that govern how power flows across the network. In order to 
model TEP suitably, this rules should be incorporated into the model. Kirchhoff’s first law establishes that 
power is balanced at each node: the sum of the incoming flows and the power generated is equal to the 
outcoming flows and the demand. A power-not-served term is included to cover the cases where the 
demand cannot be served in full. 

w w w w w

Î È Î È

- + = -å å, , , , ,
t t t t t

t jic t ijc t i t i t i
jic EL CL ijc EL CL

f f g D pns        (5) 

Kirchhoff’s second law establishes that the directed sum of the electrical potential differences (voltage) 
around any closed loop in the network is zero. We use the DCLF (Direct Current Load Flow) version of 
this rule, a widely used approximation that defines the flow though a transmission line as the difference 
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of the voltage angles at the extreme nodes of the line (these angles are variables of the system operation) 
divided by the reactance of the line (which is a fixed parameter). We need to include different versions of 
this equation for existing and candidate lines, as this constraint should only be enforced if the line has 
been installed. 

w w
w q q-

= Î, ,

,

t t

t t i t j

t ijc

ijc

f ijc EL
X

         (6) 

( )

( )

w w
w w

w w
w w

q q

q q

-
- ³- - Î

-
- £ - Î

, ,

, ,

, ,

, , ,

1 ,

1 ,

t t

t t

t t

t t

t i t j

tijc t ijc t ijc

ijc

t i t j

t ijc t ijc t ijc

ijc

f M x ijc CL
X

f M x ijc CL
X

       

(7) 

Generation and flow limits: 

w w w w w- £ £ Î È
, , , , ,

, ( )t t t t t

t ijc t ijc t ijc t ijc t ijc
F x f F x ijc CL EL        (8) 

w w w£ £
, , ,
t t t

t i t i t i
G g G            (9) 

w w£ £
, ,

0 t t

t i t i
pns D            (10) 

Each possible system state w
t
 assigns a value to the uncertain parameters that define the system. Some 

of these uncertainties can be described with probability distributions. These are random uncertainties. 
Examples of these are renewable production, hydro inflows or contingencies. Other sources of 
uncertainty (such as generation expansion, peak demand growth or fuel prices), cannot be accurately 
captured with a static probability distribution and are therefore more difficult to handle. We refer to these 
as dynamic or nonrandom uncertainties. In particular, the relationship between generation expansion 
planning (GEP) and TEP is complex and difficult to characterize, as there is some endogeneity between 
them (some transmission investments are dependent on the installation of new generation, and new 
generation cannot sell its power unless it is adequately connected to the network). Some authors have 
attempted to model this interrelationship. For instance, reference (Pozo, Sauma, & Contreras, 2013) 
recently proposed a 3-level model that optimizes TEP, GEP and solves system operation respectively. 
However, most studies consider that GEP and TEP take a leader and a follower role respectively. This 
work focuses on TEP entirely and, consistently with most of the literature, GEP is considered an input for 

transmission planning. This input is defined through uncertain scenarios w
t
. 

III.  REAL OPTIONS AND THE VALUE OF WAITING TO INVEST 

Real options applies option valuation techniques to decision making under uncertainty. Financial 
options are instruments which grant the holder the right (but not the obligation) to buy (in the case of a 
call option) or sell (in the case of a put option) a given underlying asset at a future date (the expiry) at a 
specified price (the strike) (Hull, 2012). The holder pays the premium in exchange for the option. The 
expected payoffs (and hence the values) of a call and a put option are respectively: 

( )
( )

+

+

E -

E -
,

,

[ ]

[ ]
T T D

T T D

N Y K Df

N K Y Df
          (11) 
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Where: 

{ }+é ù =ê úë û max 0,x x : denotes the positive values of a given function 

N : option notional 

K : strike 

T
Y : price of the underlying asset at expiry T  

,T D
Df : discount factor to value cash at expiry T  at decision date D . 

Option valuation techniques assume a given model for the evolution of the underlying asset (in a 
financial context this often means a Geometric Brownian Motion, GBM) and obtain outputs such as 
option value or optimal exercise time. In some cases these magnitudes can be conveniently calculated as 
closed-form solutions. 

A real option is similarly defined as the right (but not the obligation) to engage in a business initiative 
such as expanding capacity, deferring investment or abandoning a project (Dixit & Pindyck, 1994; 
Luehrman, 1998). This technique provides with a framework to analyze the value of flexibility in 
management decisions. 

Option Value (OV), whether financial or real, has two main components, intrinsic value and time value: 

= +OV IV TV            (12) 

Intrinsic value (IV) captures net present value. This amounts to the expected payoff that the holder 
would receive if he exercised the option at a given moment. In the case of a project, intrinsic value 
corresponds to its expected profit, which can be either positive or negative. Time value is the remaining 
constituent of the option value and reflects the potential for the payoff to increase before expiry. Time 
value is higher for longer option maturities and more volatile underlyings. 

It has been proven that the solutions found using a real options approach coincide exactly with those of 
dynamic optimization at least in the cases where myopic decisions are optimal (Gahungu & Smeers, 
2011). There have been some applications of real options to power systems, in particular in GEP (Batista, 
Geber de Melo, Teixeira, & Baidya, 2011; Bunn & Larsen, 1994; Gahungu & Smeers, 2011). Some authors 
have also studied some specific aspects of transmission investments using this technique, such as the 
optionality embedded in single lines (Saphores, Gravel, & Bernard, 2004) or in selecting the size of 
interconnections (Fleten, Heggedal, & Siddiqui, 2011) or the potential of distributed generation or FACTS 
for deferring investment in transmission lines (Blanco, Olsina, Garces, & Rehtanz, 2011; Vasquez & 
Olsina, 2007). We seek to apply ROV to valuing the flexibility embedded in requesting permits in TEP. 
We develop an approximation for option value that can be applied to realistic transmission systems. 

IV.  TRANSMISSION EXPANSION DECISIONS 

The expansion decisions that should be considered in TEP include: 

 Starting a permitting process for building a new line. This step is relatively inexpensive but it is the 
most time consuming, taking usually from 7 to 10 years and even up to 15 years if problems arise. In 
general, the more jurisdictional areas are crossed by the line, the longer this procedure will take. In 
addition, public opposition or environmental concerns can get a project rejected. It is not possible to 
initiate the permitting process for all the potentially interesting lines (which are prohibitively many). A 
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permit gives the right (but not the obligation) to build a line. It is possible to abandon permitted 
projects that once were in the medium-term plan if they are not optimal short-term expansion 
decisions. 

 Adding a new circuit to an existing OHL (overhead line). This can take up to 1 year and can be 
undertaken relatively easily in most cases. 

 Building a new line. This can take from 1 to 2 years and is the most expensive action in transmission 
expansion. The process of building an OHL consists of land clearing at the right-of-way, building 
temporary access roads, material delivering, foundation building, tower assembly and erection, 
conductor stringing, inspection and site restoration (Hydro Quebec, 2014). The relevant permits should 
be obtained before starting construction. 

TEP in its classical form deals with determining the optimal network investments that minimize the 
expected total cost of the system (usually, the investment cost of network reinforcements minus the 
operation cost savings that can be achieved through a more efficient dispatch). However, the long 
permission process means that there is value in requesting the permit first and deciding whether to 
build or not later. The usual approach to TEP decides the optimal transmission plan and requests permits 
for the transmission lines contemplated in the plan. On the contrary, our approach requests two types of 
permits: 

 For lines that bring substantial expected savings to the operation of the system. 

 For lines that do not bring substantial expected savings now, but have a high potential to do so in 
the future, once the permit has been granted. 

Our approach interprets expected and potential savings as: 

 We define the intrinsic value of a transmission line as the expected operation savings that it can bring 
to the system minus investment cost. Intrinsic value coincides therefore with NPV and can be used to 
prioritize transmission lines according to their relative urgency (a transmission line that can bring 
relatively large savings should be prioritized). 

 Option value identifies investments with a high potential upside. The permitting process should also 
be started for the most promising investments, identified by high option values. 

This paper proposes expressions for intrinsic and option value that are simple enough to be applied to a 
problem as complex as TEP. In addition, as will be shown later, it is possible to calculate the threshold 
levels of the uncertain parameters that would make a given investment attractive using these definitions 
of intrinsic and option value. These calculations would determine by how much fuel prices should rise or 
how much new generation should be installed, so that a given transmission line should be built. 

The main idea in this work is to consider that initiating a permitting process is a real option on 
investing in a transmission project at the future date when the permit is granted. ROV will be applied 
to calculate intrinsic value (expected operation cost savings minus investment cost) and option values 
(potential upside) for the candidate transmission investments considered. We therefore consider: 

Consistently with this, The simplified decision dynamics that underlie the TEP problem are 
represented in Figure 1. 

 First, permits are requested at the decision date D. These permits take around 10 years to be 
granted. 

 The permits are granted at time P. Then, the decision to build them is taken, that is, the projects 
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are either built or abandoned. 

 If a transmission line is deemed suitable, then construction is started at time P and finished at 
time B. This process takes around 1 year. In that case, the line is in operation for its full useful 
life (usually, 40 years). 

Decision to request a permit 
(option value>>0)

Requested permit is granted

Yes No

Line is built

D

P

B

T
End of 

analysis

Line is in 
operation

Build line? (intrinsic value>>0)

Permission process 
(around 10 years)

Construction time 
(around 1 year)

Useful life of the 
investment considered

 
Figure 1. Decision dynamics. 

 

In accordance with this, we can define several types of investments: 

 Type A transmission lines will be defined as the ones with a high intrinsic value. As explained 
above, they should be treated as a priority. 

 Type B transmission lines have a negative or low intrinsic value but a high option value. This 
means that they do not bring substantial expected savings. However, they have a high potential to 
do so once we take into account the possible evolutions of the system from time D to time B and 
the fact that we would only build them if they turn out to be profitable. This option value depends 
on the sensitivity of operation savings with respect to the parameters that describe the state of 
system and the volatility of these parameters. This value will be higher for higher sensitivities and 
volatilities. 

 Type C transmission lines have a negative or low intrinsic value and a low option value. They are 
not interesting neither as an immediate investment nor potentially in the future. Therefore, they 
should not be taken into account for future analyses. 

V.  STYLIZED CASE STUDY 
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This example shows a very simplified situation where the decision dynamics in TEP are more evident. 
The system is composed of a single demand. There are three projects that can be considered: A, B and C. 
The system is represented in Figure 2.  

A

B

C

 

 

Figure 2. Example system. 

 

The operation cost savings brought by each of the transmission projects, minus of operation costs (this is, 
the net savings, NS) are uncertain. For the sake of simplicity, we will assume that they are independent, 
follow a normal distribution and are revealed at time P, once the permit has been granted. If we had not 
assumed the latter, we should have modeled a further tree from the final nodes. 

( , )

( , )

( , )

A A B B C c

A A A

B B B

C C C

NS x NS x NS x NS

NS N

NS N

NS N

m s
m s
m s

= + +

»
»
»          

(13) 

where: 

, ,
A B C
x x x : binary variables that determine if the respective transmission project is built (1) or not (0). 

 

All costs are expressed as an annual cost or an annual depreciation rate, so that no further amortization 
calculations or discounting is necessary. The parameters of the normal distributions are shown in Table 1. 
In order to build a scenario tree that is consistent with the normal probability distribution, the 
probabilities of each of the distributions being positive or negative has been calculated, together with 
their expected values conditional to being either positive or negative. For this, the expected value of the 
truncated normal distribution was used. 

( 0)

( / )
/ 0 1 ( / )

1 ( / )

P NS

NS NS

m
s

f m s
m s m s

m s

æ ö- ÷ç ÷> = Fç ÷ç ÷çè ø
é ù-é ù é ùê úE > = + -F -ê ú ê úë û ë ûê ú-F -ë û       

(14) 
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  A B C 

µ 1000 0 -100 

 10 5000 1 

        

Prob (NS> 0) 1 0,5 0 

Prob (NS< 0) 0 0,5 1 

E(NS/NS > 0) 1000 3989,42 0 

E (NS/NS < 0) 0 -3989,42 -100 

 

Table 1.Description of net operation cost savings. 

 

 

The classical approach to the TEP problem would invest in projects that provide positive expected net 
savings and request for their permits. The decision trees can be seen in Figure 3. 

Low 0 M€

Yes

P BD

No

Build line?

High 1000 M€

0%

100%

0 M€

Low ‐3989.4 M€

Yes

P BD

No

Build line?

High 3989.4 M€

50%

50%

0 M€

Low ‐100 M€

Yes

P BD

No

Build line?

High 0 M€

100%

0%

0 M€

Transmission line A Transmission line B Transmission line C

 

Figure 3. Classical decision tree. The planner decides whether to build or not the transmission lines at the 
decision date. 

 

This would nean investing only on project A and getting an expected net saving of 1000 M€. 

However, our proposal considers that permits are requested at the decision date D but we only decide 
whether to build or not when the permit is granted, at date P. We assume that the cost of requesting a 
permit is negligible with respect of the building cost of the lines. 
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Low 0 M€

Yes

P BD

No

Request 
permit?

High 1000 M€

0%

100%

Build line? Yes

No

Yes

No

0 M€

0 M€

1000 M€

0 M€

0 M€

Transmission line A

 

Low ‐3989.4 M€

Yes

P BD

No

Request 
permit?

High 3989.4 M€

50%

50%

Build line? Yes

No

Yes

No

‐3989.4 M€

0 M€

3989.4 M€

0 M€

0 M€

Transmission line B

Low ‐100 M€

Yes

P BD

No

Request 
permit?

High 0 M€

100%

25%

Build line? Yes

No

Yes

No

‐100 M€

0 M€

0 M€

0 M€

0 M€

Transmission line C

 
Figure 4. Proposed decision tree. Requesting a permit is equivalent to an option on building the capacity. 

 

We consider that the intrinsic value of a transmission line is defined by the expected net savings it brings 
into the system. The option value embedded in requesting a permit can be calculated as the net savings 
taking into account that the line will only be built if it turns out to be profitable once the permit has been 
granted. In accordance with the decision trees above, the intrinsic and option values for the transmission 
lines are: 
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  A B C Total 

Intrinsic Value (M€) 1,000.0 0 0 1,000.0 

Option Value (M€) 1,000.0 1,994.7 0,0 2,994.7 

 

Table 2. Intrinsic and option values for the stylized case study. 

 

Transmission line A has a high intrinsic value, it is very much in the money. Therefore, it should be in the 
optimal plan and its permit should be requested. Transmission line B is not in the money; if we decided to 
build it now, the expected operation cost savings would be negative. However, it has a high potential for 
savings in the future. We should therefore request the permit to build it, which we will only use if the high 
scenario materializes. However, transmission line C will never be profitable. It has neither intrinsic nor 
option value. Consequently, it can be dropped from further analyses. In this illustrative case study, the 
expected profit from an options-based strategy is 2,994.7 M€, which is around two times larger than the 
expected profit from the classical approach, which amounts to only 1000 M€. As can be seen and contrary 
to the classical approach to TEP, the optionality embedded in requesting a permit has value and 
therefore it should be taken into account in the decision process. Rather than determining what lines to 
build at the decision date, the planner should request permits for the ones that present a high potential, 
and only decide whether to build them or not once the permit has been granted and construction can be 
started. 

 

It is clear that the model presented in this stylized example is much simpler than the real TEP problem. In 
particular, for a realistic system: 

 The number of generators is large. 
 There are many uncertainties associated to the problem. 
 These uncertainties do not necessarily follow a normal distribution. 
 There are still uncertainties at the point when we decide whether to build the line or not. 
 The complexity of the system means that, in order to calculate the expected operation cost savings 

we need to solve the problem defined in section II.   
 Requesting a permit involves a cost. 

 

As a result, calculating the intrinsic and option value of network investments is an extremely complex 
problem. However, we formulate the definitions of intrinsic and option value and develop an 
approximation so that they can be calculated in a real case study. We consider the full complexity of the 
network and the dispatch using the formulation in section II. In addition, we incorporate the 
uncertainties, although, in order to be able to extract a closed-form solution, we will assume that they 
follow a normal distribution. In addition, although requesting a permit does involve a cost, this cost is 
indeed negligible with respect to the system operation cost and the investment cost associated to 
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transmission lines, so we will not consider it. In the rest of the paper, we present our approach and 
demonstrate it in a real case study. In accordance to it, the planner does not decide on which lines to 
invest at inception, but rather requests permits for the set of transmission lines with the highest 
potential and only decides whether to build them or not when the permit has been granted, which is 
assumed to happen 10 years afterwards. 

VI.  CALCULATION OF INTRINSIC AND OPTION VALUE 

This section presents the definition of intrinsic and option value and the approximation proposed for 
its calculation. The analysis focuses on the optionality that is implicit in the permitting process. The 
simplified decision dynamics are: 

D : decision period. The decision to request permits is made at this period. The decision will be based 
on potential operation cost savings (option value). 

P : time period when the permit is granted (assumed to be around 10 years after the permit was 
requested). Once the permit has been granted, the decision to build the line or not is made. Lines with a 
sufficiently high intrinsic value (they bring high operation cost savings to the system) will be built. 

B : time period when the line is already built and in operation. This is assumed to happen 1 year after 
the decision to build the line was taken and the investment cost was realized. 

T : final time period in the analysis. 

The intrinsic value of an investment is calculated as the expected cost savings that the investment 
would bring. It corresponds to the classical definition of project NPV. In the case of building a line, this 
means the difference in operation costs between a base case where the line is not installed and the 
situation where the line is in operation, minus the investment cost: 

w ww ww w

w w
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Option value at the starting date is calculated assuming the line is only built if doing so results in net 
savings. The only difference between Eq. (15) and Eq. (16) is that Eq. (16) only adds the scenario where 
building the line presents a positive intrinsic value (its potential benefit). 
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(16) 

It should be noted that the definition above is consistent with a European option, which implicitly 
assumes that the planner can decide to build the line or not once the permit has been granted at time P, 
but not later. The planner will normally have further opportunities to build the line (for instance, yearly 
before the permit expires). This would lead to modeling a Bermudan option. However, permit expiration 
dates are very case dependant, so we choose to assume that the permit can be used at P or abandoned, 
with no further actions taken. 

It is important to note that, given the investment is discrete, the differences in operation costs are based 
on increments rather than marginal information. If an expansion plan has already been defined, a line can 
be canceled if it is not considered profitable once the permit has been granted. Option value reflects the 
possibility of canceling or deferring the project. This case inverts the calculation of expected savings: 
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(17) 

VII.  PROPOSED APPROXIMATION 

The exact evaluation of option value is complex, as it implies integrating costs across the probability 
distributions of all uncertain parameters, with each evaluated point demanding the resolution of system 
operation. Therefore, a feasible procedure is necessary. 

A.  Operation cost approximation 

The proposed operation cost approximation will have to take into account several sources of 

uncertainty w
yt  (such as demand or fuel prices). Given that, once investment variables are fixed, the 

problem is convex, changes in operation cost when only one of the uncertain parameters changes can be 
exactly described with a piecewise linear function (Birge & Louveaux, 1988). For small changes in the 
uncertain parameters, the changes in operation cost for a given scenario w  can be approximated by a 
linear function. The sensitivity of operation cost with respect to every uncertain parameter is expressed 
as: 

w
wd

w

¶
=

¶

t

t t
yt

yt

opc
          (18) 

For the sake of simplicity, hatted expressions will represent the expected values of variables or 

parameters when evaluated at the decision date D . For instance, w0ˆ
yt

 represents the expected value of the 

uncertain parameter w0
yt

 at time t  when evaluated from the perspective of decision date D . The expected 

operation cost for parameter w0ˆ
yt

 is therefore w w w= 0ˆ (ˆ )t t

t t yt
opc opc . 

A linear approximation of operation cost for a given scenario w  as a function of the uncertain 
parameters gives: 

w w wd w w= + -å 0 0ˆ( ) ( ˆ )t t ty
t t t yt yt yt

y

opc Y opc         (19) 

It should be noted that wd t

yt
, the sensitivities of operation cost, are marginal information that is readily 

available from the resolution of the system operation problem as described in II.  For instance, the 
sensitivity to demand is the dual variable of Kirchhoff’s first Law (Eq. 5), which  coincides with nodal 
prices; the sensitivity with respect to generation capacity is the dual variable of the generation limit (Eq. 
9); and the sensitivity to the price of a given fuel is the total consumption of that fuel. These sensitivities 
can also be calculated numerically for a small increment in the uncertain parameter. 

B.  Expressions for intrinsic and option value 

The value of investing in line 
ijc
x  at decision date D

 

can be calculated as the expected value of 

operation cost savings (the difference in operation cost when the line is installed with respect to the base 
case where it is not installed) net of investment costs: 
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Option value computes the expected value of the investment conditional to it being positive at the time 
when the line can be built. If we use the operation cost approximation as a function of the base operation 
cost and the uncertainties: 
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     (21) 

These expressions will guide the rest of this section. 

C.  Description of the uncertainties 

For a given scenario, the value of uncertain parameters at time B  is assumed to follow a normal 

distribution centered on its forecast w0ˆ
yt

. Its standard deviation sy  must be adjusted for time: 

s s=*
,

y y
t D
Et            (22) 

Fitting a normal distribution to the uncertainties is arguably good for sources of uncertainty such as 
fuel prices or peak demand growth, or generation capacities where increments can be very small (such as 
wind or solar) (Shimko, 1994). In many cases, these uncertainties are usually represented by means of 
lognormal distributions, so that the difference between the actual realization and the forecast can be 
reasonably approximated with a normal distribution (Hull, 2012).  

w w s- » N0 0 *ˆ (0, )y
yt yt

          (23) 

The approximation will not be as good when representing lumpier investments, such as nuclear 
capacity investments for instance. However, in a real-sized system there will be many uncertain factors 
involved, so the central limit theorem supports the approximation of normality. This assumption allows 
calculating closed-form solutions for option value, which calculation would otherwise be unmanageable 
for real-sized systems. 

Substituting in the option value expression we obtain: 
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where the parameters of the normal distribution describing the overall dynamics (total normal 

distribution) are m s,
Total Total

. 

A linear combination of normal distributions, where each normal m sN( , )
i i

 has a weight 
i
w  is defined 

as: 

m s m sN = Nå( , ) ( , )
LC LC i i i

i

w          (25) 

The mean of the combination is: 
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m m=åLC i i
i

w            (26) 

The volatility of the combination can be obtained as: 

s s s s r
¹

= +å å2

,
LC i i i j i j ij

i i j i

w w w          (27) 

It is convenient to define a constant correlation coefficient applicable to all pairs, known as 
equicorrelation: 
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Therefore, for the particular case of option value: 
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             (30) 

Once the parameters for the total normal distribution have been calculated, the option value can be 
derived as: 

m s
+é ù= E Nê úë û,

( ) ( , )
D ijc Total Total

OV x          (31) 

This can be expressed as the expected value of a truncated normal probability distribution where only 
positive values are integrated. This can be calculated as: 
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where f  and F  denote the standard normal probability density function and the standard cumulative 
distribution respectively. This result is used to approximate the option value in a closed form and is 
applied in the case study described below. 

Another useful result is the probability that a given investment will be carried out at a future date. This is 
referred to as the In-The-Moneyness or In-The-Money (ITM) probability of the option, and can be 
calculated as: 

,
( ) ( , ) 0 1 ( / )
D ijc Total Total Total Total

ITMP x m s m sé ù= R N ³ = -F -ê úë û
 
     (33) 

In addition, the sensitivity of intrinsic value with respect to the uncertainties can be calculated as: 
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The key uncertainties *y  for a given transmission line can be identified as the ones with the largest 

sensitivity absolute value =*
, ,

argmax
y D ijc y

y Sens . 

The thresholds for having a positive intrinsic value, assuming only one of the uncertainties is allowed 
to change, can be calculated as: 

= ,

, , *

, *

( )
D ijc

D ijc y

ijc y

IV x
Th

Sens
 

          (35) 

Threshold values can be used to analyze the robustness of a decision with respect to changes in the 
scenarios. The usefulness of this is shown in the case study below. 

VIII.  APPLICATION OF THE APPROXIMATION TO THE STYLIZED CASE STUDY 

In order to demonstrate the proposed approximation above in a very simplified setting, the developed 
approximation has been applied to the stylized case study. 

a realistic case study will illustrate the potential benefits for a real system. 

In this simplified example, operation cost savings are expressed as: 

A A B B C C
NS x NS x NS x NS= + +           (36) 

Therefore, we can express operation cost as a constant (the initial operation cost value before any 
expansion decisions are made) minus net savings:  

( )
A A B B C C

opc K x NS x NS x NS= - + +          (37) 

The uncertainties in this problem correspond to the net savings that can be obtained from the 
transmission lines: 

{ }, ,
A B C

y NS NS NSº
           (38) 

As described in section V.  ,these uncertainties are assumed to follow a normal distribution.  
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»             (39)  

The parameters that describe these normal distributions are given in Table 3: 

  A B C 

µ 1000 0 -100 

 10 5000 1 

Table 3. Parameters of the normal distributions. 
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We can calculate the parameters to be input into the definitions of option value: average and standard 
deviation. The average is the difference in operation cost without and with the line minus the investment 
cost of the line, this is, the net savings: 
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We can also calculate the sensitivities of operation cost to be applied: 
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The only sensitivities that have a nonzero value are the ones that link a transmission line with its own 
net savings in the cases where the line has been built ( 1x = ): 

1 1 1 1A B Cx x x

A B C
d d d= = == = =            (42) 

Because in this example we only have one factor for each transmission line, we get the following 
expression: 
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Once the formulae to calculate intrinsic value, option value and in-the-money probability have been 
applied to the projects of building the transmission lines, the results obtained were the ones in 

The results are given in Table 4. Intrinsic value, option value and in-the-money probability calculated 
for the projects. 

  A B C 

IV 1.000,0 0,0 -100,0

OV 1.000,0 1.994,7 0,0

ITMP 1,0 0,5 0,0

Table 4. Intrinsic value, option value and in-the-money probability calculated for the projects. 

As can be seen, because both approaches assume a normal distribution, the values calculated using the 
decision trees and the developed approximation match exactly. This small example demonstrates the 
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proposed approach in a very simplified setting, where the complexities associated with TEP are largely 
ignored. We now present an application of options-based approach to a realistic setting. 

IX.  SPANISH CASE STUDY 

A realistic case study based on the Spanish system has been developed in order to test the feasibility of 
the proposed approach. It has been implemented as an additional feature to the existing TEPES model 
(Transmission Expansion Planning for an Electrical System), a more detailed description of which can be 
found in reference (Lumbreras & Ramos, 2013). Transmission data as of 2008 were taken from publicly 
available ENTSO-e and REE E-SIOS cases (REE, 2012). The same E-SIOS cases were used to build 
forecasts for demand, generation capacities and renewable power generation as a percentage of installed 
capacity. The system is composed of 1084 nodes and 294 power plants (nuclear, coal, CCGTs, hydro, wind 
and solar). The existing transmission network is configured by 1505 lines and transformers. TEPES 
considers random renewable inputs and hydro inflows as well as individual contingencies in generation 
and transmission (taken from the E-SIOS data as well). These uncertainties are static, random 
uncertainties taken into account in the scenarios. HVDC transmission lines can be included in the 
analysis.  

The ROV analysis considers dynamic uncertainty in  demand, generation capacities and fuel and 
carbon prices. For the sake of simplicity, demand and capacities for a given technology were assumed to 
grow at the same rate at all nodes. Historical data were analyzed in order to extract values for the 
volatilities of the uncertain parameters. Market values were used for fuel prices, extracted from 
Bloomberg, using 12m futures for Rotterdam coal, UK gas prices (the most relevant European price 
indicators) and EU Allowances for carbon prices respectively. Historical installed capacities for wind, 
solar and gas generators were taken from the system operator (Red Eléctrica de España, 2014, ). Where 
available, a 15 year data series was used. Annualized volatility was created from historical data as a 
rescaling of the standard deviation of consecutive increments: 
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where: 

i
N : number of observations 

i
n : number of observations that can be found in one year. For instance, if there is an observation every 

business day,  = 260
i
n . 

The resulting parameters can be seen in Table 4: 
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Annual 
volatility 

Demand 4.1% 

Generation capacities   

Wind 17.5% 

Solar 57.7% 

Gas 22.1% 

Fuel and carbon prices   

Coal 24.9% 

Gas 53.4% 

Carbon 77.4% 

Table 5. Volatility of the uncertain parameters present in the case study. 
 

The model described in sections II.  and VII.  was coded in GAMS and solved using CPLEX 12.1 as a 
solver, on a PC at 2.80 GHz with 4 GB RAM running Microsoft XP 32 bits. The relative optimality 
tolerance used was 0.1%. The CPU time used for the full set of calculations was 5860.4s (less than 2 hours). 

Following the proposed approach, intrinsic and option values are used to establish the priority of 
investments: 

 Relatively high, positive intrinsic values signal transmission lines that are expected to bring savings if 
installed. Permits should be requested for them and they should be treated as priority projects. 

 Transmission lines with a low intrinsic value but a relatively high option value have the potential of 
bringing high savings in the future. Permits should be requested for them and their value should be 
monitored during the permitting process. 

A set of 74 promising candidate lines had their intrinsic and option values calculated. The optimal 
expansion plan identified by TEPES installed 24 of these lines. Intrinsic and option values were calculated 
for all candidates. As intrinsic and option values are dependent on operation cost, they also depend on 
the starting situation of the network. Three different situations have been considered in the case study: 

 Initial state of the network, with no transmission additions 

 Assuming the optimal expansion plan will be fully deployed. For the 24 transmission lines actually 
included in the plan, the values refer to the option of not building them or deferring their construction. 

 An intermediate situation where only the most urgent investments are considered committed, and the 
others are only being studied. This is an interesting example as often long-term TEP selects only some 
of the most important investments while leaving the rest of the plan undefined. This assumes that only 
4 lines are installed. 

Table 6 shows the results of the case study. A threshold of 10 M€ has been established in order to filter 
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investments. As expected, intrinsic and option values are much higher at the initial state of the network, 
where more improvements can be made. Conversely, if the base case is the optimal plan, option values 
are much lower. Moreover, by definition, all intrinsic values taking the optimal plan as a base case are 
negative. This is because changing anything from the optimal plan must result in a worse result (if there 
was a way of finding a better result, that plan would not be optimal). The intermediate situation presents 
intermediate results. 

. 
  Initial state of the network     Intermediate       Optimal plan       

                                

Line 
Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

1 0 302,5 302,5 1,00 High  0 77,5 77,5 1,00 High  1 -25,4 0,0 0,00   

2 0 301,0 301,0 1,00 High  0 76,0 76,0 1,00 High  0 -4,5 6,4 0,42   

3 0 306,3 306,3 1,00 High  0 88,1 88,1 1,00 High  1 -0,7 3,2 0,47   

4 0 304,9 304,9 1,00 High  0 90,6 90,6 1,00 High  0 -5,3 6,5 0,41   

5 0 342,6 342,6 1,00 High  0 25,2 25,2 0,99 High  0 -3,3 0,6 0,23   

6 0 341,4 341,4 1,00 High  0 34,7 34,7 1,00 High  1 -9,2 3,7 0,31   

7 0 378,0 378,0 1,00 High  0 0,2 3,1 0,51   0 -2,0 2,2 0,40   

8 0 376,9 376,9 1,00 High  0 -0,9 1,9 0,44   0 -3,1 5,6 0,43   

9 0 378,0 378,0 1,00 High  0 0,3 3,1 0,51   0 -1,9 2,2 0,40   

10 0 376,9 376,9 1,00 High  0 -0,9 2,0 0,44   0 -3,0 5,7 0,43   

11 0 343,9 343,9 1,00 High  0 45,0 45,0 1,00 High  0 -1,8 3,3 0,43   

12 0 342,6 342,6 1,00 High  0 43,7 43,7 1,00 High  0 -3,1 6,7 0,44   

13 0 385,3 385,3 1,00 High  0 -1,0 1,2 0,40   0 -1,1 2,6 0,44   

14 0 384,3 384,3 1,00 High  0 -1,9 0,8 0,31   0 -2,1 6,7 0,46   

15 0 385,2 385,2 1,00 High  0 -1,0 1,1 0,40   0 -1,2 2,6 0,44   

16 0 384,2 384,2 1,00 High  0 -2,0 0,8 0,31   0 -2,1 6,7 0,46   

17 0 308,2 308,2 1,00 High  0 86,6 86,6 1,00 High  1 -20,1 0,0 0,01   

18 0 306,8 306,8 1,00 High  0 109,3 109,3 1,00 High  0 -5,0 5,8 0,40   

19 0 386,6 386,6 1,00 High  0 -2,7 0,5 0,23   0 -2,7 4,9 0,43   

20 0 385,6 385,6 1,00 High  1 -84,3 0,0 0,00   1 -81,9 0,0 0,00   

21 0 382,4 382,4 1,00 High  0 2,7 3,4 0,73   0 -1,2 6,6 0,47   

22 0 381,4 381,4 1,00 High  0 1,6 2,5 0,66   0 -2,2 5,2 0,44   
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23 0 307,3 307,3 1,00 High  0 63,7 63,7 1,00 High  0 -3,7 6,8 0,43   

24 0 305,9 305,9 1,00 High  0 62,3 62,3 1,00 High  0 -5,1 6,1 0,40   

25 0 343,0 343,0 1,00 High  0 61,5 61,5 1,00 High  1 -67,2 0,0 0,00   

26 0 341,7 341,7 1,00 High  0 68,4 68,4 1,00 High  0 -3,8 5,8 0,42   

27 0 306,7 306,7 1,00 High  0 78,1 78,1 1,00 High  0 -3,0 6,3 0,44   

28 0 305,3 305,3 1,00 High  0 76,7 76,7 1,00 High  0 -4,4 5,1 0,40   

29 0 384,8 384,8 1,00 High  0 1,1 2,1 0,62   0 -0,1 8,0 0,50   

30 0 383,9 383,9 1,00 High  0 3,7 4,2 0,79   1 -76,0 0,0 0,00   

31 0 346,2 346,2 1,00 High  0 20,2 20,4 0,97 High  1 -4,7 8,4 0,43   

32 0 345,0 345,0 1,00 High  0 22,5 22,5 1,00 High  0 -4,5 8,5 0,43   

33 0 389,0 389,0 1,00 High  0 -0,7 2,7 0,47   1 -1,4 9,0 0,48   

34 0 388,4 388,4 1,00 High  0 -1,2 1,9 0,42   0 -2,0 9,6 0,47   

35 0 345,1 345,1 1,00 High  0 36,0 36,0 1,00 High  0 -1,9 11,1 0,48 Low  

36 0 344,4 344,4 1,00 High  0 36,1 36,1 1,00 High  1 -48,1 0,0 0,00   

37 0 374,8 374,8 1,00 High  0 -1,9 1,7 0,38   0 -1,2 11,1 0,48 Low  

38 0 374,1 374,1 1,00 High  0 -2,6 0,8 0,29   0 -1,9 5,6 0,45   

39 0 419,3 419,3 1,00 High  0 0,0 2,1 0,50   0 -0,5 13,2 0,49 Low  

40 0 419,1 419,1 1,00 High  1 -159,6 0,0 0,00   1 -125,9 0,0 0,00   

41 0 379,0 379,0 1,00 High  0 -2,2 1,7 0,37   0 -2,3 13,6 0,48 Low  

42 0 378,1 378,1 1,00 High  0 -3,0 0,7 0,25   0 -3,2 8,3 0,45   

43 0 366,9 366,9 1,00 High  0 0,3 2,9 0,52   0 -2,0 12,9 0,48 Low  

44 0 365,9 365,9 1,00 High  0 -0,7 1,5 0,44   0 -3,1 6,8 0,44   

45 0 315,2 315,2 1,00 High  0 -3,9 1,4 0,30   1 -56,3 0,5 0,04   

46 0 313,8 313,8 1,00 High  1 -81,9 0,0 0,00   0 -5,3 8,9 0,43   

47 0 356,8 356,8 1,00 High  0 34,6 34,6 1,00 High  1 -1,5 14,6 0,48 Low  

48 0 355,6 355,6 1,00 High  0 33,4 33,4 1,00 High  0 -4,8 9,1 0,43   

49 0 349,8 349,8 1,00 High  0 -1,4 2,2 0,42   0 -1,7 15,0 0,48 Low  

50 0 348,9 348,9 1,00 High  0 -2,2 0,9 0,31   0 -2,6 7,7 0,45   

51 0 219,8 219,8 1,00 High  0 -2,9 1,9 0,36   1 -18,7 7,3 0,31   

52 0 218,7 218,7 1,00 High  1 -92,9 0,0 0,00   0 -4,0 9,5 0,44   

53 0 334,8 334,8 1,00 High  0 8,5 10,2 0,76 Medium 0 -3,2 15,0 0,47 Low  
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54 0 333,4 333,4 1,00 High  0 7,1 8,5 0,76   0 -4,5 7,7 0,43   

55 0 348,3 348,3 1,00 High  0 -1,5 2,1 0,41   1 -1,8 14,9 0,48 Low  

56 0 347,5 347,5 1,00 High  0 -2,4 0,8 0,29   0 -3,3 9,8 0,45   

57 0 348,8 348,8 1,00 High  0 43,2 43,2 1,00 High  1 -2,3 14,1 0,48 Low  

58 0 347,6 347,6 1,00 High  0 45,5 45,5 1,00 High  0 -4,7 9,1 0,43   

59 0 365,3 365,3 1,00 High  0 63,8 63,8 1,00 High  1 -31,1 4,6 0,21   

60 0 364,0 364,0 1,00 High  0 63,4 63,4 1,00 High  1 -75,6 0,0 0,00   

61 0 329,6 329,6 1,00 High  0 0,0 2,7 0,50   0 -2,8 15,5 0,47 Low  

62 0 328,6 328,6 1,00 High  0 -1,0 1,3 0,41   1 -7,6 6,8 0,38   

63 0 330,2 330,2 1,00 High  0 -2,9 1,9 0,36   1 -16,1 9,7 0,35   

64 0 329,0 329,0 1,00 High  0 -4,1 0,8 0,24   0 -4,6 10,6 0,44 Low  

65 0 339,3 339,3 1,00 High  0 14,8 15,5 0,89 High  0 -3,6 16,9 0,47 Low  

66 0 338,0 338,0 1,00 High  0 14,2 14,6 0,92 High  1 -36,7 1,2 0,09   

67 0 316,8 316,8 1,00 High  0 -0,5 2,6 0,47   1 -2,1 16,5 0,48 Low  

68 0 315,8 315,8 1,00 High  0 -1,5 1,3 0,38   0 -3,8 11,0 0,45 Low  

69 0 342,6 342,6 1,00 High  0 19,4 19,7 0,94 High  1 -16,2 10,1 0,35 Low  

70 0 341,1 341,1 1,00 High  0 17,9 18,1 0,95 High  0 -5,5 10,3 0,43 Low  

71 0 342,4 342,4 1,00 High  0 32,9 32,9 1,00 High  0 -3,6 15,8 0,47 Low  

72 0 341,0 341,0 1,00 High  0 31,5 31,5 1,00 High  0 -5,0 9,3 0,43   

73 0 331,2 331,2 1,00 High  0 9,1 11,6 0,73 Medium 1 -4,8 14,0 0,45 Low  

74 0 330,0 330,0 1,00 High  0 7,8 10,0 0,73 Medium 0 -4,7 10,6 0,44 Low  

Total   25.622,9 25.622,9         1.721,5 49,1     0,0 549,6     

Table 6. Full results for the Spanish case study for the initial state of the network, the intermediate 
situation and the optimal one. 

High option values point to investments that should be monitored and for which a permit should be 
requested. For the lines not included in the expansion plan, a high option value signals a permit that 
should be requested. For lines already included in the plan, the values refer to the option to cancel them 
or deferring their construction. In many cases, this value is very close to zero. This means that the line 
seems so profitable under the current conditions that it will almost certainly be built. For instance, 
deferring line 60 has an option value of 0, while deferring line 67 has an option value of 16.5 M€. The first 
kind of lines should be prioritized, while in the second case the focus should be on monitoring potential 
savings. 

Overall, the total savings that using an options-based approach can bring can be approximated by total 
option value. Assuming that the base case follows the classical approach and installs the optimal 
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transmission expansion plan, an options based approach would be able to get an additional 549.6 M€, 
which corresponds to the total option value in this case. 

In addition, all the sensitivities with respect to the uncertain parameters are available as intermediate 
calculations. In the example of line 67, the key uncertainties are gas prices (with a sensitivity of -2.42 M€/ 
1€ increase in gas prices) and carbon prices (with a sensitivity of -2.24 M€/ 1€ increase in carbon prices). 
This means that, although that line is currently in the optimal expansion plan, it will be withdrawn if gas 
or carbon prices rise sufficiently. For instance, the threshold increase in gas prices before the line becomes 
unprofitable can be calculated as the intrinsic value of not building it divided by the sensitivity of 
intrinsic value with respect to gas prices. This is: 
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This means that if gas prices increase slightly (0.87 €), then transmission line 67 will not be part of the 
optimal plan. The ITM probability represents the probability of the line being still profitable when the 
permit is granted. In this case, it was calculated as 50%. This means that there is a 50/50 chance that this 
line will be finally built. 

This example shows how some investments that form part of the optimal plan are so sensitive to the 
uncertainties that they have a high probability of not being completed. However, some others (such as the 
example of line 60, where deferring investment had an option value of 0) seem robust with respect to the 
uncertainties and their assumed volatilities. This information can make it easier for planners to identify 
the key investments and focus on them while requesting additional permits for other lines that could 
bring important savings in some scenarios. 

X.  CONCLUSIONS 

The transmission network supports the physical flows that underlie the operation of the power system. 
Therefore, Transmission Expansion Planning (TEP), that is, determining the reinforcements that should 
be added to the network, is a complex problem with deep implications. In particular, building a new line 
involves a long permitting process that takes around 10 years to complete. Therefore, transmission 
investments must anticipate the evolution of the uncertainties involved during that period. A particularly 
relevant example is the case of generation expansion, where deregulation means that there is no 
coordinated generation expansion plan and GenCos decide their generation expansion following price 
signals. On the contrary, given that transmission is a natural monopoly, transmission expansion decisions 
are taken centrally by the Transmission System Operator (TSO). The classical approach to TEP in this 
context is to determine the expansion plan and request the permits for the transmission lines that are part 
of this plan. 

Our approach takes a different perspective and tries to take advantage of the fact that, once a permit 
has been granted, the TSO can decide whether to build the line or abandon the project. Therefore, we 
consider that requesting a permit is equivalent to an option on building the transmission line at the future 
date when the permit is granted. This leads to requesting permits not only for the transmission lines that 
bring high operation cost savings to the system (with a high NPV or high intrinsic value), but also for the 
ones that have a high potential to bring savings in the future. Calculating these intrinsic and option values 
would be unmanageable for realistic networks. However, we develop an approximation based on the 
sensitivities of operation cost with respect to the uncertainties that is simple enough to be applied to real 
systems. 
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The benefits of the proposed approach and the validity of the developed approximation are illustrated 
in a stylized case study, which highlights the fact that there is value in requesting permits for lines with a 
negative NPV if they have a high option value and therefore have the potential to be highly beneficial in 
the future. The technique has also been applied to a realistic case study based on the Spanish system, 
where it identifies transmission lines with a high option value. In the case study, the expected operation 
cost savings  In addition, the method calculates investment thresholds in terms of the uncertainties, for 
instance, beyond what fuel prices a transmission line is attractive. It also determines the in-the-money 
probabilities of the transmission lines, that is, the probability of they turning out to be profitable at the 
date when the permit is granted. This has also been illustrated in the Spanish case study. The case study 
shows that an options-based strategy outperforms the classical optimization approach as it exploits the 
flexibility embedded in the permitting process. 
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