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Abstract: This paper presents a comprehensive study on the spectral properties of mimetic finite-
difference operators and their application in the robust fluid–structure interaction (FSI) analysis of
aircraft wings under uncertain operating conditions. By delving into the eigenvalue behavior of
mimetic Laplacian operators and extending the analysis to stochastic settings, we develop a novel
stochastic mimetic framework tailored for addressing uncertainties inherent in the fluid dynamics
and structural mechanics of aircraft wings. The framework integrates random matrix theory with
mimetic discretization methods, enabling the incorporation of uncertainties in fluid properties,
structural parameters, and coupling conditions at the fluid–structure interface. Through spectral
and localization analysis of the coupled stochastic mimetic operator, we assess the system’s stability,
sensitivity to perturbations, and computational efficiency. Our results highlight the potential of
the stochastic mimetic approach for enhancing reliability and robustness in the design of aircraft
wings, paving the way for optimization algorithms that integrate uncertainties directly into the
design process. Our findings reveal a significant impact of stochastic perturbations on the spectral
radius and eigenfunction localization, indicating heightened system sensitivity. The introduction
of randomized singular value decomposition (RSVD) within our framework not only enhances
computational efficiency but also preserves accuracy in low-rank approximations, which is critical
for handling large-scale systems. Moreover, Monte Carlo simulations validate the robustness of
our stochastic mimetic framework, showcasing its efficacy in capturing the nuanced dynamics of
FSI under uncertainty. This study contributes to the fields of numerical methods and aerospace
engineering by offering a rigorous and scalable approach for conducting uncertainty-aware FSI
analysis, which is crucial for the development of safer and more efficient aircraft.

Keywords: mimetic finite-difference operators; spectral analysis; stochastic analysis; aircraft wing

MSC: 65M06; 76D05; 65C20

1. Introduction

The interplay between fluid dynamics and structural mechanics, known as the fluid–
structure interaction (FSI), is a critical aspect in the design and analysis of aircraft wings.
Understanding this interaction is essential for ensuring the performance, safety, and relia-
bility of aircraft under various operating conditions. However, the inherent complexities
of FSI problems, coupled with uncertainties in material properties, fluid conditions, and
external forces, pose significant challenges in achieving accurate and robust simulations.
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Recent advancements in computational methods have led to the development of
mimetic finite-difference operators [1], which have shown great promise in preserving the
key physical properties and mathematical structures of the underlying differential equa-
tions. These operators, particularly the mimetic Laplacian, have been successfully applied
in various fields, including fluid dynamics and electromagnetism, offering a powerful tool
for numerical discretization that closely mimics the behavior of continuous operators.

In the context of FSI analysis for aircraft wings, the ability to accurately capture
the spectral properties of the system and handle uncertainties is of paramount impor-
tance. Traditional deterministic approaches may fall short in addressing the stochastic
nature of real-world conditions, leading to designs that are potentially over-conservative or
under-optimized. To this end, integrating stochastic analysis techniques with mimetic dis-
cretization methods offers a promising avenue for enhancing the reliability and efficiency
of FSI simulations.

In this paper, we propose a novel stochastic mimetic framework that leverages the
strengths of mimetic finite-difference operators and random matrix theory to address
the uncertainties in FSI analyses of aircraft wings. By incorporating stochastic pertur-
bations into the mimetic operators, the methodology aims to capture the variability in
fluid properties, structural parameters, and coupling conditions, thereby enabling a more
comprehensive understanding of the system’s behavior under uncertain conditions.

Through spectral and localization analyses of the stochastic mimetic operator, the
stability and sensitivity of the coupled fluid–structure system are investigated, providing
insights into the impact of uncertainties on the eigenvalue distribution and eigenfunction
behavior. Additionally, the article explores sparse approximation techniques to reduce the
computational complexity of the stochastic operator, facilitating efficient simulations and
uncertainty quantification.

The application of the stochastic mimetic framework to FSI analysis of aircraft wings is
demonstrated through numerical simulations under various flight conditions and random
perturbations. The results highlight the framework’s ability to capture the coupled behavior
of the fluid and the structure, as well as its potential for robust design optimization in the
presence of uncertainties.

Overall, this study contributes to the advancement of numerical methods for FSI
analysis, offering a rigorous and scalable approach for handling uncertainties in the design
and evaluation of aircraft wings. The proposed stochastic mimetic framework holds
promise for improving the safety, performance, and reliability of aircraft, paving the way
for more resilient and efficient aerospace engineering solutions.

To elucidate the foundational principles and genesis of the novel stochastic mimetic
framework, it is essential to understand the integration of mimetic finite-difference meth-
ods with stochastic elements. This framework is built upon the rigorous mathematical
foundation of mimetic discretization, which ensures that discrete differential operators
mimic their continuous counterparts, preserving essential geometric and physical prop-
erties. By extending this approach into the stochastic realm, the framework introduces a
robust mechanism for handling uncertainties, thereby adapting traditional deterministic
models to more realistically simulate the unpredictable nature of physical phenomena
encountered in aerospace engineering. This integration not only highlights the innovative
convergence of deterministic mathematical structures with probabilistic analysis but also
establishes a new paradigm for conducting uncertainty-aware computational simulations
that are critically needed in the design and analysis of complex systems like aircraft wings.

This study introduces a novel stochastic mimetic framework for FSI analysis that
stands to make significant contributions both theoretically and practically within the fields
of aerospace engineering and computational mechanics. The broader significance of this
research can be articulated across several dimensions:

• Enhancing design robustness and safety: The ability of the stochastic mimetic frame-
work to integrate uncertainties directly into the design and analysis of aircraft wings
represents a major step forward in enhancing the robustness and safety of aerospace
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structures. By accounting for variations in material properties, fluid dynamics, and
operational conditions, the framework helps engineers design aircraft that are more
reliable under a wide range of conditions, potentially reducing the risk of structural
failures and improving overall flight safety.

• Advancing computational methods in engineering: Theoretically, this research con-
tributes to the advancement of computational methods used in engineering by inte-
grating mimetic discretization techniques with stochastic analysis. Mimetic methods
are celebrated for their ability to preserve important physical and geometric properties
of the systems they model, and coupling these with stochastic elements allows for a
more accurate representation of real-world conditions.

• Promoting efficient resource use in aerospace testing and development: The applica-
tion of the stochastic mimetic framework can lead to more efficient use of resources
in aerospace testing and development. By providing a more accurate prediction of
how aircraft wings and other structures will perform under variable conditions, the
framework can potentially reduce the need for extensive physical prototyping and
testing. This efficiency not only cuts costs but also accelerates the development cycles
for new aerospace technologies.

• Facilitating multidisciplinary research and collaboration: The stochastic mimetic
framework bridges several disciplines, including mathematics, physics, engineering,
and computer science. By doing so, it encourages a multidisciplinary approach to
solving complex problems and fosters collaboration between experts in different fields.
This collaborative potential is crucial for tackling the increasingly complex challenges
faced in modern engineering projects.

• Contributing to sustainable engineering practices: By enabling more precise sim-
ulations and designs, the stochastic mimetic framework contributes to sustainable
engineering practices. Optimized designs that account for variability and uncertainty
can lead to structures that are not only safer but also more material- and energy-
efficient, supporting broader sustainability goals in engineering.

In summary, this research enriches the academic and practical landscapes by provid-
ing a robust, sophisticated tool for dealing with the inherent uncertainties of real-world
engineering problems. Its implications span the theoretical advancements in computational
mechanics, practical improvements in aerospace design and safety, and broader impacts on
sustainability and multidisciplinary collaboration.

The remainder of this paper is organized as follows: Section 2 reviews related works,
highlighting the development and application of mimetic finite-difference methods and
their significance in various fields, including FSI analysis. In Section 3, the methodology
is presented, laying the groundwork for integrating stochastic analysis with mimetic
operators. Section 4 delves into the novel integration of random matrix theory with mimetic
operators to enhance numerical methods, specifically addressing the complexities of FSI
problems in aircraft wing analysis. Section 5 presents a detailed FSI analysis of aircraft
wings, employing the proposed stochastic mimetic framework to explore the impact of
uncertainties. In Section 6, an evaluation of the performance and efficacy of stochastic
mimetic operators is developed through spectral and localization analysis, followed by
an exploration of sparse approximation techniques for computational efficiency. Section 7
discusses the implications of our findings, reflecting on the robustness and reliability of the
stochastic mimetic framework in FSI analysis under uncertain conditions. Finally, Section 8
concludes the paper with a summary of our contributions and the potential of our proposed
framework for advancing the design and evaluation of aircraft wings, setting a foundation
for future research in aerospace engineering solutions.

2. Related Works

The development of mimetic finite-difference methods has been a topic of significant
interest in recent years due to their ability to preserve important physical properties of the
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underlying mathematical models [2,3]. These methods have found applications in various
fields, including computational fluid dynamics, electromagnetics, and image processing [4–6].

One of the key advancements in mimetic finite-difference methods was the introduc-
tion of high-order operators by Kreiss and Scherer [7], who developed the summation
by parts (SBP) method. Their work laid the foundation for constructing operators that
achieve higher-order accuracy while maintaining conservation properties. Building on
this, Castillo and Grone [8] proposed a matrix analysis approach to construct high-order
mimetic finite-difference operators for divergence and gradient, which exhibit the same
order of accuracy at both the interior and the boundaries of the computational domain.

Further extensions to higher dimensions were explored by Castillo and Miranda [9],
who developed a comprehensive framework for mimetic discretization methods. Their
work demonstrated the versatility of mimetic operators in addressing complex geometric
configurations and boundary conditions.

In addition to the theoretical development of mimetic operators, there has been a
focus on their practical implementation and application. The Mimetic Operators Library
Enhanced (MOLE) [1] is an open-source library that provides a collection of mimetic finite-
difference operators for solving partial differential equations. This tool has facilitated the
application of mimetic methods to a wide range of problems, including seismic wave
modeling [10] and image processing [5].

Recent studies have continued to explore the potential of mimetic finite-difference
methods in various applications. For example, Abouali and Castillo [11] investigated the
use of high-order mimetic discretization methods for solving the Poisson equation with
Robin boundary conditions on curvilinear meshes. Their results highlighted the accuracy
and robustness of mimetic methods in handling complex geometries.

The mimetic finite-difference method has been extensively studied in the literature
due to its ability to preserve important physical properties of the continuous problem in
the discrete setting. One comprehensive review of the method is provided by Lipnikov
et al. [12], where they discuss the theoretical foundations of the mimetic approach and its
application to various types of partial differential equations. The paper highlights the ver-
satility of the mimetic method in handling complex geometries and ensuring conservation
properties, making it a powerful tool for scientific computing.

Bochev and Hyman [13] delve into the principles of mimetic discretizations of dif-
ferential operators, presenting a framework that ensures compatibility between spatial
discretizations and the underlying geometric, topological, and algebraic structures of the
continuous problem. Their work emphasizes the importance of designing discretizations
that are in harmony with the mathematical and physical aspects of the problem, which is a
key aspect of the mimetic approach.

Mimetic finite-difference methods have garnered significant attention in recent years
due to their ability to preserve important physical and mathematical properties of the con-
tinuous problems they discretize. One of the pioneering works in this field was presented
by Castillo and Grone [8], where they developed high-order mimetic finite-difference oper-
ators for divergence and gradients on staggered grids, achieving uniform order of accuracy
both in the interior and at the boundary.

Recent advancements have been made by Villamizar et al. [14], who applied high-
order mimetic differences to the convection–diffusion equation, a fundamental equation
describing physical phenomena involving the transfer of particles or energy. They utilized
the Castillo–Grone (CG) operators, which possess a sextuple of free parameters, to study
the stability and precision properties of their numerical scheme. Their work demonstrated
the dependency of the scheme’s performance on these CG free parameters and proposed
parameters that favor both stability and precision.

Another noteworthy contribution to the field is by Corbino and Castillo [1], who
developed high-order mimetic finite-difference operators satisfying the extended GAUSS
divergence theorem. These operators are characterized by having the same order of
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accuracy in the interior and at the boundary, no free parameters, and optimal bandwidth,
making them highly efficient for numerical computations.

In recent trends, the focus has been on enhancing the efficiency and applicability
of mimetic finite-difference methods to a broader range of problems. Researchers are
exploring adaptive and multiscale approaches to further improve the accuracy and com-
putational performance of these methods [15]. Moreover, there is an increasing interest in
integrating mimetic methods with machine learning (ML) techniques to tackle complex
multiscale and multiphysics problems [16]. As computational demands continue to grow,
the development of advanced mimetic finite-difference methods that can leverage modern
computational architectures, such as parallel and GPU computing, is becoming a crucial
area of research [17].

These works collectively highlight the significance of mimetic finite-difference methods
in solving partial differential equations with high accuracy and preserving the underlying
physical principles.

3. Methodology

Given that the mimetic gradient (G), divergence (D), and Laplacian (L) operators
satisfy key identities like DG = L, some interesting results can be explored.

One fundamental property that can be examined is the spectrum of the mimetic
Laplacian operator L. Since L is constructed as L = DG, its eigenvalues will be closely
related to those of the constituent gradient and divergence operators.

Proposition 1. The eigenvalues of the mimetic Laplacian L are real and non-negative.

Proof. By construction, L is a symmetric matrix, since L = DG and D = −GT (from the
mimetic identities). For any eigenvector v with eigenvalue λ, we have:

Lv = λv, (1)

vT Lv = λvTv, (2)

(Gv)T(Gv) = λ|v|2. (3)

Since the left side is a quadratic form, it must be non-negative. Therefore, λ ≥ 0.
Moreover, L being symmetric implies it has all real eigenvalues.

This shows the mimetic Laplacian’s spectrum lies on the non-negative real line, similar to
the continuous Laplacian operator. The kernel (null space) of L can be further characterized:

Proposition 2. The dimension of the kernel of L equals the number of connected components in
the domain.

Proof. From the identity G fconst = 0, we see that locally constant functions lie in the kernel
of G. Consequently, they are also in the kernel of L, since L = DG.

In a connected domain, the only functions in ker(L) are the globally constant functions,
so dim(ker(L)) = 1. More generally, the locally constant functions on each connected
component span the kernel.

Some other properties worth exploring:

• Spectral radius of L and its relation to the mesh size.
• Conditioning of L and convergence of iterative solvers.
• Eigenfunction approximation quality compared to the continuous case.

3.1. Spectral Radius of L and Its Relation to the Mesh Size

The mesh size can be denoted as h, which typically represents the maximum edge
length or the diameter of the elements in the discretization.
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Proposition 3. The spectral radius of the mimetic Laplacian L is O(h−2), i.e., it grows quadratically
as the mesh is refined.

Proof. To analyze the spectral radius, the eigenvalue problem for L can be considered:

Lv = λv, (4)

vT Lv = λvTv, (5)

(Gv)T(Gv) = λ|v|2. (6)

Now, the term (Gv)T(Gv) will be studied. The mimetic gradient operator G approxi-
mates the continuous gradient, so we expect |Gv| = O(h−1)|v|. This is because the entries
of G scale as O(h−1) to approximate the derivative.

Substituting this into the eigenvalue equation, we obtain

O(h−2)|v|2 = λ|v|2, (7)

λ = O(h−2). (8)

Therefore, the eigenvalues of L, including the spectral radius, scale as O(h−2).

This result has important implications for the stability and conditioning of the mimetic
Laplacian operator:

• As the mesh is refined (h → 0), the spectral radius grows, indicating that the matrix
becomes increasingly ill-conditioned. This can affect the convergence of iterative
solvers.

• The O(h−2) growth is consistent with the continuous Laplacian operator, which is an
unbounded operator on infinite-dimensional function spaces. The mimetic Laplacian
mirrors this behavior in the discrete setting.

• Preconditioning techniques, such as multigrid methods or domain decomposition,
become crucial for an efficient solution of the linear systems arising from mimetic
discretizations, especially on fine meshes.

3.2. Conditioning of L and Convergence of Iterative Solvers

The condition number of a matrix is a key factor in determining the stability and
convergence behavior of iterative methods.

Proposition 4. The condition number of the mimetic Laplacian L grows as O(h−2), where h is the
mesh size.

Proof. The condition number of a symmetric positive definite matrix A is defined as:

κ(A) =
λmax(A)

λmin(A)
, (9)

where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A, respectively.
From the previous discussion, we know that the eigenvalues of L scale as O(h−2).

Therefore, λmax(L) = O(h−2).
On the other hand, λmin(L) corresponds to the smallest non-zero eigenvalue, as L has

a non-trivial kernel corresponding to constant functions. The smallest non-zero eigenvalue
typically scales as O(1), independent of the mesh size.

Combining these observations:

κ(L) =
O(h−2)

O(1)
= O(h−2). (10)

Thus, the condition number of L grows quadratically as the mesh is refined.
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The conditioning of L has significant implications for the convergence of
iterative solvers:

• Iterative methods, such as conjugate gradient (CG) or generalized minimal residual
(GMRES), typically exhibit a convergence rate that depends on the condition number.
A higher condition number leads to slower convergence.

• For the mimetic Laplacian, the O(h−2) growth of the condition number implies that
the convergence rate of iterative solvers deteriorates as the mesh is refined. This is
known as the “mesh-dependent convergence” phenomenon.

• To mitigate this issue, preconditioning techniques are employed. Effective precon-
ditioners, such as multigrid or domain decomposition methods, aim to reduce the
condition number and improve the convergence rate.

• The goal of preconditioning is to transform the linear system Lx = b into an equivalent
system M−1Lx = M−1b, where M is a preconditioning matrix chosen to approximate
L−1. If M is a good approximation, then the preconditioned system has a lower
condition number, leading to faster convergence.

The conditioning analysis highlights the challenges associated with solving linear
systems arising from mimetic discretizations, particularly on fine meshes. It emphasizes the
importance of preconditioning strategies to ensure efficient and scalable iterative solvers.

Preconditioning is an active area of research in mimetic and other numerical methods.
The design of optimal preconditioners often depends on the specific problem, the mesh
structure, and the desired accuracy. Multigrid methods, which exploit the multi-resolution
nature of the problem, have proven to be highly effective for mimetic discretizations.

3.3. Eigenfunction Approximation Quality Compared to the Continuous Case

Consider the continuous eigenvalue problem for the Laplacian operator ∆ on a domain
Ω with appropriate boundary conditions:

−∆u = λu in Ω, (11)

u = 0 on ∂Ω. (12)

The eigenfunctions u and corresponding eigenvalues λ of this problem are determined
by the shape of the domain and the imposed boundary conditions. The eigenfunctions
form an orthonormal basis for the function space L2(Ω).

Now, considering the mimetic discretization of this eigenvalue problem using the
mimetic Laplacian L:

Lu = λhu. (13)

Here, u represents the discrete eigenvector, and λh is the corresponding discrete
eigenvalue. The question is how well the discrete eigenpairs (u, λh) approximate the
continuous eigenpairs (u, λ).

Proposition 5. Let (u, λh) be a discrete eigenpair of the mimetic Laplacian L, and let (u, λ) be the
corresponding continuous eigenpair. Then, the eigenfunction approximation error satisfies:

|u − u|L2 = O(hp), (14)

|λ − λh| = O(h2p), (15)

where h is the mesh size and p is the order of accuracy of the mimetic discretization.

Proof. The proof of this proposition relies on the approximation properties of the mimetic
operators and the regularity of the continuous eigenfunctions.

The key steps are as follows:
The mimetic gradient operator G approximates the continuous gradient with an ac-

curacy of O(hp) in the L2 norm. The mimetic divergence operator D approximates the
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continuous divergence with an accuracy of O(hp) in the L2 norm. The continuous eigen-
functions u are sufficiently smooth, typically belonging to a higher-order SOBOLEV space
Hp+1(Ω). The combination of these approximation properties and the smoothness of the
eigenfunctions leads to the stated error estimates. The detailed proof involves techniques
from functional analysis and finite element theory, such as interpolation estimates and
BRAMBLE–HILBERT lemmas.

The proposition highlights several important aspects:

• The mimetic discretization achieves a high-order approximation of the continuous
eigenfunctions, with an error that decreases as O(hp) in the L2 norm.

• The eigenvalue approximation error is even better, decreasing as O(h2p). This is known
as “double order convergence” and is a desirable property for eigenvalue problems.

• The accuracy of the eigenfunction approximation depends on the order of the mimetic
discretization. Higher-order methods (larger p) lead to faster convergence and more
accurate eigenfunctions.

• The smoothness of the continuous eigenfunctions is crucial for achieving the opti-
mal convergence rates. Eigenfunctions with lower regularity may lead to reduced
convergence rates.

The eigenfunction approximation result highlights the effectiveness of mimetic meth-
ods in capturing the spectral properties of the continuous operator. It also highlights the
importance of using higher-order discretizations for problems where accurate eigenfunc-
tions are required.

It is worth noting that the convergence rates stated in the proposition are asymptotic
results, which are valid as the mesh size h tends to zero. In practice, the actual convergence
behavior may be affected by factors such as the geometry of the domain, the presence of
singularities, and the specific choice of mesh and discretization parameters.

4. Integrating Random Matrix Theory with Mimetic Operators for Enhanced
Numerical Methods

We will consider a novel framework that combines random matrix operator techniques
with mimetic operators. Random matrix theory has found numerous applications in various
fields, including numerical analysis, quantum mechanics, and data science. By integrating
random matrix techniques with mimetic discretizations, we can potentially develop new
methods with improved stability, efficiency, and robustness.

Consider a random matrix operator R that acts on the discrete function space asso-
ciated with the mimetic discretization. R can be defined as a matrix whose entries are
random variables drawn from a specific probability distribution. The choice of the distri-
bution depends on the desired properties of the operator and the underlying physics of
the problem.

Now, we will combine the random matrix operator R with the mimetic Laplacian L to
create a new operator L:

L = L + γR. (16)

Here, γ is a parameter that controls the strength of the random perturbation. The oper-
ator L represents a stochastic mimetic Laplacian, which incorporates both the deterministic
mimetic discretization and a random component.

The properties and behavior of L can be analyzed using tools from random matrix
theory and mimetic discretization analysis. Some potential areas of investigation that we
will tackle next are the following:

• Eigenvalue distribution: Study the statistical distribution of the eigenvalues of L.
Random matrix theory provides powerful results, such as the WIGNER semicircle
law and the MARCHENKO–PASTUR law, which describe the asymptotic behavior
of eigenvalues for certain classes of random matrices. Understanding the eigenvalue
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distribution can provide insights into the stability and conditioning of the stochastic
mimetic operator.

• Localization of eigenfunctions: Investigate the localization properties of the eigen-
functions of L. Random perturbations can lead to the phenomenon of ANDERSON
localization, where eigenfunctions become localized in space. This can have impli-
cations for the efficiency of iterative solvers and the capturing of local features in
the solution.

• Stochastic convergence analysis: Analyze the convergence properties of the stochas-
tic mimetic operator L as the mesh is refined. Extend the convergence results for
deterministic mimetic operators to the stochastic setting, taking into account the ran-
dom perturbations. This can provide insights into the robustness and reliability of
the method.

• Preconditioning strategies: Develop preconditioning techniques specifically tailored
for the stochastic mimetic operator L. Exploit the structure of the random perturba-
tions to design efficient preconditioners that accelerate the convergence of iterative
solvers. Random matrix techniques, such as randomized singular value decompo-
sition (SVD) or randomized interpolative decomposition (RID), can be employed to
construct effective preconditioners.

• Uncertainty quantification: Use the stochastic mimetic framework to quantify uncer-
tainties in the solution arising from random input data or model parameters. Prop-
agate the uncertainties through the discrete system using techniques like stochastic
GALERKIN methods or stochastic collocation methods. The random matrix operator
can help capture the statistical properties of the uncertainties.

• Sparse approximation: Investigate the use of random matrix techniques for sparse
approximation of the stochastic mimetic operator L. Methods like compressed sensing
or randomized sketching can be employed to obtain sparse representations of the
operator, leading to computational savings and reduced memory requirements.

The combination of random matrix techniques and mimetic operators opens up a
rich area of research with potential applications in various fields. The stochastic mimetic
framework can provide a new perspective on discretization methods, offering improved
stability, robustness, and the ability to handle uncertainties.

It is important to note that the development of a rigorous and comprehensive stochastic
mimetic framework requires further theoretical and numerical analysis. The ideas presented
here are meant to provide a starting point for exploration and innovation in this direction.
Important aspects will be discussed in the next subsections.

4.1. Eigenvalue Distribution

We will focus on the WIGNER semicircle law and the MARCHENKO–PASTUR law,
which provide valuable insights into the asymptotic behavior of eigenvalues for certain
classes of random matrices.

First, we will consider the WIGNER semicircle law. Suppose the entries of the random
matrix operator R are independent and identically distributed (i.i.d.) random variables
with zero mean and finite variance σ2. The Wigner semicircle law states that as the size of
the matrix R tends to infinity, the eigenvalue distribution of the normalized matrix 1√

n R
converges to the semicircle distribution with density:

f (x) =

{
1

2πσ2

√
4σ2 − x2, if |x| ≤ 2σ

0, otherwise
(17)

This result holds for a wide class of random matrices, including symmetric matrices
with i.i.d. entries and certain band matrices.

Now, we will apply the WIGNER semicircle law to the stochastic mimetic operator
L. Assuming the random perturbation matrix R satisfies the conditions of the WIGNER
semicircle law, we can expect the eigenvalue distribution of 1√

n γR to converge to the
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semicircle distribution as the size of the matrix tends to infinity. The eigenvalue distribution
of L will be a combination of the eigenvalues of the deterministic mimetic Laplacian L and
the semicircle distribution of the random perturbation.

Next, the MARCHENKO–PASTUR law is considered. This law applies to random
matrices of the form X = 1

n AT A, where A is an m × n matrix with i.i.d. entries having
zero mean and finite variance σ2. The MARCHENKO–PASTUR law states that, as m and n
tend to infinity with a fixed ratio c = m

n , the eigenvalue distribution of X converges to the
MARCHENKO–PASTUR distribution with density:

f (x) =

{
1

2πcσ2x

√
(b − x)(x − a), if a ≤ x ≤ b

0, otherwise
(18)

where a = σ2(1 −
√

c)2 and b = σ2(1 +
√

c)2.
To apply the MARCHENKO–PASTUR law to the stochastic mimetic operator L, we

can consider the case where the random perturbation matrix R has a structure similar to
1
n AT A. If the entries of A satisfy the conditions of the MARCHENKO–PASTUR law, we
can expect the eigenvalue distribution of γR to converge to the MARCHENKO–PASTUR
distribution as the size of the matrix tends to infinity.

The eigenvalue distribution of L will be influenced by both the deterministic mimetic
Laplacian L and the random perturbation γR. The interaction between these two compo-
nents can lead to interesting spectral properties and affect the stability and conditioning of
the stochastic mimetic operator.

Understanding the eigenvalue distribution of L provides valuable insights into its spec-
tral properties and can guide the analysis of its stability and conditioning. The WIGNER
semicircle law and the MARCHENKO–PASTUR law offer powerful tools to study the
asymptotic behavior of eigenvalues for certain classes of random matrices, which can be
applied to the stochastic mimetic framework.

It is important to note that the actual eigenvalue distribution of L may deviate from
the ideal semicircle or MARCHENKO–PASTUR distributions due to the specific structure
and properties of the mimetic operators and the choice of random perturbations. Rigorous
analysis and numerical experiments are necessary to fully characterize the eigenvalue
distribution in practical settings.

4.2. Localization of Eigenfunctions

The localization properties of the eigenfunctions of the stochastic mimetic operator L
and the phenomenon of ANDERSON localization are going to be studied. ANDERSON
localization refers to the spatial confinement of eigenfunctions in the presence of random
perturbations, which can have significant implications for the efficiency of iterative solvers
and the ability to capture local features in the solution.

In the context of the stochastic mimetic operator L = L+ γR, the random perturbation
matrix R introduces disorder into the system. The strength of the disorder is controlled
by the parameter γ. As the disorder increases, the eigenfunctions of L can transition from
being extended (spread out over the entire domain) to being localized (confined to a small
region in space).

The localization of eigenfunctions can be characterized by the inverse participation
ratio (IPR), defined as:

IPR(u) = ∑n
o=1 |uo|4

(∑n
o=1 |uo|2)2 , (19)

where u = (u1, u2, . . . , un) is an eigenfunction of L. The IPR measures the degree of
localization of the eigenfunction. For an extended eigenfunction, the IPR is of order 1

n ,
while for a localized eigenfunction, the IPR is of order 1.

The localization properties of the eigenfunctions of L can be studied using numerical
simulations and theoretical analysis. Some key aspects to investigate include the following:
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• Localization transition: Analyze the transition from extended to localized eigenfunc-
tions as the strength of the random perturbation γ increases. Identify the critical
value of γ at which the localization transition occurs and study the dependence of
the critical value on the properties of the mimetic operators and the structure of the
random perturbation matrix R.

• Localization length: Estimate the localization length, which characterizes the spatial
extent of the localized eigenfunctions. The localization length can be determined from
the decay rate of the eigenfunctions away from their peak values. Study how the
localization length depends on the strength of the random perturbation γ and the
properties of the mimetic operators.

• Multifractal analysis: Investigate the multifractal properties of the eigenfunctions of L.
Multifractality refers to the presence of a spectrum of fractal dimensions characterizing
the spatial distribution of the eigenfunctions. Analyze the multifractal spectrum and
its dependence on the strength of the random perturbation γ and the properties of the
mimetic operators.

• Impact on iterative solvers: Study the impact of eigenfunction localization on the effi-
ciency of iterative solvers for the stochastic mimetic operator L. Localized eigenfunc-
tions can lead to slow convergence of iterative methods, as information propagation
becomes limited. Develop strategies to mitigate the effects of localization, such as
preconditioning techniques or domain decomposition methods that exploit the local
nature of the problem.

• Capturing local features: Explore how the localization of eigenfunctions affects the
ability of the stochastic mimetic operator L to capture local features in the solution.
Localized eigenfunctions can provide a natural basis for representing solutions with
localized structures or sharp gradients. Investigate the potential benefits of using
localized eigenfunctions for adaptive mesh refinement or multiscale modeling.

The study of eigenfunction localization in the stochastic mimetic framework opens
up new possibilities for understanding the interplay between disorder and the spatial
structure of solutions. It can provide insights into the robustness and efficiency of numerical
methods in the presence of random perturbations and guide the development of specialized
techniques for handling localized phenomena.

Further research in this area may involve rigorous mathematical analysis, extensive
numerical simulations, and comparison with existing theories of ANDERSON localization
in other contexts, such as quantum mechanics and wave propagation in disordered media.

4.3. Stochastic Convergence Analysis

We will now focus on the stochastic convergence analysis of the stochastic mimetic
operator L as the mesh is refined. We will extend the convergence results for deterministic
mimetic operators to the stochastic setting, taking into account the random perturbations
introduced by the matrix R. This analysis will provide insights into the robustness and
reliability of the stochastic mimetic method.

To analyze the convergence properties of L, we consider a sequence of meshes
Th, h > 0 with decreasing mesh size h. The stochastic mimetic operator on the mesh
Th can be denoted by Lh = Lh + γRh, where Lh is the deterministic mimetic Laplacian and
Rh is the random perturbation matrix on the mesh Th.

We aim to establish convergence results for the stochastic mimetic operator Lh in
terms of the mesh size h and the strength of the random perturbation γ. Let u be the exact
solution of the continuous problem and uh be the approximate solution obtained by the
stochastic mimetic method on the mesh Th.

The stochastic convergence analysis involves the following steps:
Consistency: Show that the stochastic mimetic operator Lh is consistent with the

continuous operator L as h → 0. This means that for any sufficiently smooth function v,
we have:

lim
h→0

|Lhvs. −Lv| = 0, (20)
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where | · | is a suitable norm, such as the L2 norm or the energy norm.
Stability: Prove that the stochastic mimetic operator Lh is stable with respect to the

mesh size h and the strength of the random perturbation γ. Stability ensures that the
approximate solution uh remains bounded as h → 0 and γ varies. Establish a stability
estimate of the form: |uh| ≤ C(γ)| f |. (21)

Here, C(γ) is a constant that may depend on γ but is independent of h, and f is the
right-hand side function of the problem.

Error estimates: Derive error estimates for the stochastic mimetic method in terms
of the mesh size h and the strength of the random perturbation γ. Typically, the error
estimates take the form:

|u − uh| ≤ C(γ)hp, (22)

where p is the order of accuracy of the deterministic mimetic method, and C(γ) is a constant
that may depend on γ but is independent of h.

Convergence: Combine the consistency, stability, and error estimates to establish the
convergence of the stochastic mimetic method. Show that, as h → 0, the approximate
solution uh converges to the exact solution u in a suitable norm:

lim
h→0

|u − uh| = 0. (23)

The rate of convergence will depend on the order of accuracy p of the deterministic
mimetic method and the regularity of the exact solution u.

Robustness: Investigate the robustness of the stochastic mimetic method with respect
to the random perturbations. Analyze how the convergence properties and error estimates
depend on the strength of the random perturbation γ. Study the behavior of the method
for different types and distributions of random perturbations.

Reliability: Assess the reliability of the stochastic mimetic method by quantifying the
uncertainty in the approximate solution uh due to the random perturbations. Develop
probabilistic error estimates and confidence intervals for the solution based on the statistical
properties of the random perturbation matrix Rh.

The stochastic convergence analysis provides a theoretical foundation for understanding
the behavior and performance of the stochastic mimetic method. It allows us to quantify the
impact of random perturbations on the accuracy and reliability of the numerical solution.

To carry out the stochastic convergence analysis, various mathematical tools and
techniques can be employed, such as:

Stochastic finite element methods: Adapt the techniques and results from stochastic
finite element analysis to the mimetic setting. This includes the use of stochastic basis
functions, stochastic GALERKIN methods, and stochastic collocation methods.

Random matrix theory: Utilize results from random matrix theory to study the proper-
ties of the random perturbation matrix Rh and its impact on the convergence and stability
of the stochastic mimetic method.

Probabilistic error analysis: Develop probabilistic error estimates and confidence
intervals for the approximate solution uh based on the statistical properties of the random
perturbation matrix Rh. This involves techniques from probability theory and statistics.

Numerical experiments: Conduct extensive numerical experiments to validate the
theoretical convergence results and assess the performance of the stochastic mimetic method
in practice. Compare the results with deterministic mimetic methods and other stochastic
numerical methods.

The stochastic convergence analysis is a challenging and active area of research in
numerical analysis and stochastic partial differential equations. It requires a deep under-
standing of both mimetic methods and stochastic analysis. Collaborations between experts
in these fields can lead to significant advances in the development and analysis of stochastic
mimetic methods.
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To further strengthen the stochastic convergence analysis, a deeper examination of the
probabilistic nature of the error estimates provided can be added. This enhancement will
clarify how randomness in the inputs not only affects the convergence rates but also the
variability in the outcomes.

Probabilistic bounds and error analysis: Recognizing the inherent randomness of the
stochastic operator Lh, the deterministic error bounds are extended to include probabilistic
bounds that reflect the confidence levels associated with the computed solutions. This
involves detailing the conditions under which our stochastic error estimates hold with high
probability, thus providing a clearer and more practical understanding of the method’s
reliability in varying conditions.

In our analysis of the stochastic mimetic operator Lh, we focus on incorporating
probabilistic bounds into our error estimates, which allows us to account for the random
variations in the perturbation matrix Rh. This approach transforms our previous deter-
ministic bounds into more robust, probabilistic statements that quantify the uncertainty
inherent in the stochastic simulations.

Firstly, concentration inequalities will be employed, such as CHERNOFF bounds or
BERNSTEIN inequalities, to establish high-probability bounds for the error terms. These
inequalities are particularly effective in quantifying how the stochastic error ∥Lhvs. −Lv∥
behaves as the mesh size h decreases, given that the entries of Rh are independent random
variables with bounded variance. For example, by assuming that the entries of Rh are
bounded or have sub-Gaussian tails, we can derive that:

Pr(∥Lhvs. −Lv∥ ≥ t) ≤ 2 exp
(
− t2

2σ2 + 2M/3

)
, (24)

where t is the deviation level, σ2 is the variance of the entries, and M is a bound on the
maximum deviation of the entries of Rh from their mean. This tells us how tightly the
actual performance of the operator Lh is likely to cluster around its expected performance
as h tends to zero.

For a deeper understanding of the impact of extreme deviations, large deviations
theory is applied to evaluate the probability of rare events where the stochastic error signif-
icantly exceeds its typical values. This aspect of the analysis is crucial for understanding
and mitigating the risks of highly improbable but consequential deviations in solutions,
especially in critical applications. For instance, the CRAMER theorem from large deviations
theory might be applied to provide an asymptotic decay rate for the tail probabilities:

Pr(∥Lhvs. −Lv∥ ≥ t) ≈ exp
(
−nhd I(t)

)
, (25)

where n is the number of elements in the mesh, d is the dimension, and I(t) is the rate
function, which quantifies the exponential decay rate of the tail probabilities as a function
of the deviation level t.

By developing these probabilistic bounds, users of the mimetic methods can be bet-
ter informed about the confidence levels they can assign to their computational results
under various mesh refinements and perturbation strengths. For engineers and scientists
using these computational tools, such knowledge is vital for risk assessment and deci-
sion making, particularly when dealing with simulations of complex physical phenomena
under uncertainty.

To address the impact of distributional assumptions on the convergence of the stochas-
tic mimetic operator Lh, we begin by stating the fact that the properties of the random
matrix Rh play a critical role in the overall behavior of the system. Different classes of
probability distributions for the elements of Rh influence the theoretical and empirical
convergence rates of the stochastic mimetic method. For Gaussian and uniform distribu-
tions, the elements of Rh are typically well-behaved with light tails, meaning that extreme
values are less likely. In such cases, the standard deviation and the mean provide sufficient
statistics to describe the behavior of Rh and, consequently, the convergence properties of
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Lh. Under these assumptions, the error bounds derived from concentration inequalities
can be quite tight, leading to reliable and predictable convergence behavior as the mesh
size h decreases. In contrast, if the elements of Rh follow a heavy-tailed distribution such
as a PARETO, CAUCHY, or LEVY distribution, the tail behavior significantly impacts the
convergence properties. Heavy-tailed distributions are characterized by a higher probabil-
ity of realizing extreme values, which can lead to larger deviations from the mean behavior
and potentially slower convergence rates. In such scenarios, the presence of extreme values
(outliers) in Rh might cause significant local errors in the numerical solution, which do not
necessarily diminish rapidly with mesh refinement.

4.4. Preconditioning Strategies

Preconditioning strategies that are specifically tailored for the stochastic mimetic
operator L will be discussed. Preconditioning is a crucial technique in accelerating the
convergence of iterative solvers, especially for large-scale and ill-conditioned systems. In
the context of the stochastic mimetic operator, we can exploit the structure of the random
perturbations to design efficient preconditioners.

The stochastic mimetic operator L can be written as:

L = L + γR,

where L is the deterministic mimetic Laplacian and R is the random perturbation matrix.
The goal of preconditioning is to find a matrix P such that the preconditioned system P−1L
has better spectral properties and faster convergence when solved with iterative methods.

Here are some preconditioning strategies that can be explored for the stochastic
mimetic operator L:

Deterministic preconditioners: As a baseline, preconditioners designed for the deter-
ministic mimetic Laplacian L can be considered. These preconditioners can be based on
well-established techniques such as multigrid methods, domain decomposition methods,
or incomplete factorizations; while these preconditioners do not explicitly account for the
random perturbations, they can still provide a good starting point for preconditioning the
stochastic system.

Stochastic preconditioners: Develop preconditioners that specifically take into account
the structure and properties of the random perturbation matrix R. Some approaches
to consider:

a. Mean-based preconditioner: Construct a preconditioner based on the mean of the
stochastic mimetic operator, i.e., P = (L + γE[R])−1, where E[R] denotes the expected
value of the random perturbation matrix. This preconditioner captures the average
behavior of the stochastic operator.

b. Variance-based preconditioner: Incorporate information about the variance of the
random perturbations into the preconditioner. One approach is to use a preconditioner
of the form P = (L + γdiag(Var[R]))−1, where Var[R] represents the variance of the
random perturbation matrix. This preconditioner aims to adapt to the local variability
of the random perturbations.

c. Stochastic GALERKIN preconditioner: Construct a preconditioner based on the
stochastic GALERKIN formulation of the problem. In this approach, the stochastic
mimetic operator is projected onto a subspace spanned by stochastic basis functions.
The resulting deterministic system can be preconditioned using standard techniques,
and the preconditioner can be extended to the stochastic setting.

Randomized preconditioners: Employ random matrix techniques to construct efficient
preconditioners for the stochastic mimetic operator. Two promising approaches are:

a. Randomized SVD (RSVD) preconditioner: Use randomized SVD to compute a low-
rank approximation of the stochastic mimetic operator L. The preconditioner can be
constructed based on the truncated SVD, i.e., P = UΣ−1VT , where U, Σ, and V are
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obtained from the RSVD of L. This preconditioner captures the dominant spectral
information of the operator.

b. Randomized interpolative decomposition (RID) preconditioner: Apply RID to com-
pute a low-rank approximation of the stochastic mimetic operator L. The precondi-
tioner can be constructed based on the RID, i.e., P = (PrRr)−1, where Pr and Rr are the
interpolation and restriction operators obtained from the RID of L. This preconditioner
exploits the local structure of the operator.

Adaptive preconditioners: Develop adaptive preconditioning strategies that dynam-
ically update the preconditioner based on the current approximation and the properties
of the random perturbations. These preconditioners can adapt to the local structure and
variability of the stochastic mimetic operator during the iterative solution process.

The effectiveness of these preconditioning strategies depends on the specific properties
of the stochastic mimetic operator, such as the structure and magnitude of the random
perturbations, the spatial correlation of the perturbations, and the underlying mesh. Nu-
merical experiments and theoretical analysis are necessary to assess the performance and
robustness of different preconditioners.

For instance, to focus on a particular technique, incorporating the Stochastic GALERKIN
method into our preconditioning strategy offers a robust framework for managing uncer-
tainties in the stochastic mimetic operator L. This method projects the stochastic problem
onto a subspace spanned by polynomial chaos basis functions, which align with the proba-
bility distributions of the input random variables, typically those defining the perturbation
matrix Rh. This preconditioner specifically addresses the variability induced by the random
perturbations by integrating these basis functions into the preconditioning process. It
effectively transforms the stochastic system into a deterministic but larger system, where
the standard preconditioning techniques can be applied. This approach not only assists
in managing the randomness but also in preserving the spectral properties of the mimetic
operator, which are crucial for the convergence of iterative solvers.

To construct such a preconditioner, we first approximate the stochastic operator Lh
using the GALERKIN projection onto the polynomial chaos basis. The resulting matrix, say
PSG, is then utilized to precondition the system:

P−1
SG Lh,

where PSG is typically formed by considering the expected value of the product of Lh
with the polynomial chaos basis functions. This preconditioner aims to reduce the effec-
tive condition number of the stochastic system, thereby speeding up the convergence of
iterative methods.

The following example, illustrated in Figure 1, demonstrates the generation of a
stochastic Laplacian matrix, the construction of a simple stochastic preconditioner, and the
solution of the resulting linear system. The process is outlined through the following steps:

1. Generation of the stochastic Laplacian matrix: A deterministic Laplacian matrix is
first generated with main diagonal elements set to 2 and off-diagonal elements set to
−1. Stochastic perturbations are introduced by adding a diagonal matrix with entries
drawn from a normal distribution, scaled by a factor γ. This results in the stochastic
Laplacian matrix:

L = sp.diags([2 × 1n,−1 × 1n−1,−1 × 1n−1], [0,−1, 1]) + γ × sp.diags(N (0, 1, n), 0).

2. Preconditioning: A simplified stochastic preconditioner is generated as a diagonal
matrix, whose entries are the reciprocals of the expected values of the diagonal entries
of the stochastic Laplacian. This preconditioner is an approximation, assuming the
mean diagonal value is 2 + γ ×N (0, 1):

P = sp.diags
(

1
2 + γ ×N (0, 1, n)

)
.
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3. Solution of the linear system: A linear system P × L × x = P × b is solved, where b is
a random vector. This system is solved using a sparse solver, demonstrating how the
preconditioner can aid in handling the stochasticity introduced in the Laplacian.

4. Visualization: The solution x is plotted to illustrate the effect of the stochastic precon-
ditioning on the solution behavior.

Figure 1. Solution to the preconditioned stochastic system showing how the solution varies with index.

This simple example serves as a demonstration of how stochastic elements can be inte-
grated into numerical linear algebra tasks, highlighting the need for robust preconditioning
methods in the presence of randomness.

4.5. Sparse Approximation

We will develop the use of random matrix techniques for sparse approximation
of the stochastic mimetic operator L. Sparse approximation techniques aim to find a
compact representation of the operator that captures its essential properties while reducing
computational and memory requirements. This is particularly relevant for large-scale
problems where the stochastic mimetic operator may have a high dimensionality.

The stochastic mimetic operator L can be expressed as:

L = L + γR,

where L is the deterministic mimetic Laplacian and R is the random perturbation matrix.
The goal of sparse approximation is to find a sparse representation of L that accurately
captures its action on vectors while minimizing the number of nonzero entries.

Here are some random matrix techniques that can be employed for sparse approxima-
tion of the stochastic mimetic operator:

Compressed sensing: Compressed sensing is a powerful framework for recovering
sparse signals from a limited number of measurements. In the context of the stochastic
mimetic operator, we can view the operator as a signal and aim to find a sparse repre-
sentation of it. The main idea is to randomly sample the action of the operator on a set
of basis vectors and then use compressed sensing algorithms to reconstruct the sparse
representation. The key steps are as follows:

a. Random sampling: Generate a set of random basis vectors ϕo
m
o=1 and compute the

action of the stochastic mimetic operator on these vectors, i.e., yo = Lϕo. The number
of samples m is typically much smaller than the dimension of the operator.

b. Sparse recovery: Use compressed sensing algorithms, such as ℓ1-minimization or
greedy methods like orthogonal matching pursuit (OMP), to recover the sparse repre-
sentation of the operator from the sampled measurements yo

m
o=1. The sparse represen-

tation can be expressed in terms of a dictionary of basis functions, such as wavelets or
learned dictionaries.

c. Approximation: Reconstruct the approximated stochastic mimetic operator L̃ using
the sparse representation obtained from compressed sensing. The approximated
operator can be used in place of the original operator for efficient computations.
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Randomized sketching: Randomized sketching techniques aim to construct a compact
representation of the stochastic mimetic operator by randomly projecting it onto a lower-
dimensional subspace. The sketched operator preserves the essential properties of the
original operator while reducing its dimensionality. The main steps are:

a. Random projection: Generate a random matrix S of size m × n, where m ≪ n and n is
the dimension of the stochastic mimetic operator. The entries of S can be drawn from
a suitable probability distribution, such as Gaussian or RADEMACHER distributions.

b. Sketching: Compute the sketched operator L̃ = SLST , which is a compressed repre-
sentation of the original operator. The sketched operator has a reduced dimensionality
of m × m.

c. Approximation: Use the sketched operator L̃ as an approximation of the original
stochastic mimetic operator for efficient computations. The sketched operator can be
used in iterative solvers, preconditioners, or other numerical algorithms.

Randomized SVD (RSVD): RSVD is a randomized algorithm for computing a low-rank
approximation of a matrix. It can be applied to the stochastic mimetic operator to obtain a
sparse representation. The main steps are:

a. Random sampling: Generate a set of random vectors ωo
r
o=1 and compute the action of

the stochastic mimetic operator on these vectors, i.e., Y = LΩ, where Ω = [ω1, . . . , ωr].
b. Orthogonalization: Compute the QR factorization of Y to obtain an orthonormal basis

Q for the range of LΩ.
c. Projection: Project the stochastic mimetic operator onto the subspace spanned by Q,

i.e., B = QTLQ.
d. SVD: Compute the SVD of the reduced matrix B, i.e., B = UΣVT . The left singular

vectors of B are used to construct the sparse approximation of the stochastic mimetic
operator, i.e., L̃ = QUΣ.

The sparse approximation techniques mentioned above can significantly reduce the
computational and memory requirements associated with the stochastic mimetic operator.
They allow for the efficient storage and manipulation of the operator while preserving its
essential properties.

However, it is important to note that the effectiveness of these techniques depends
on the specific structure and properties of the stochastic mimetic operator. The sparsity
and low-rank structure of the operator, as well as the magnitude and distribution of the
random perturbations, can impact the accuracy and efficiency of the sparse approximation.

Rigorous analysis and numerical experiments are necessary to assess the performance
and reliability of these sparse approximation techniques for the stochastic mimetic operator.
The choice of the appropriate technique may depend on the specific application, the desired
level of accuracy, and the available computational resources.

Furthermore, the integration of sparse approximation techniques with other aspects
of the stochastic mimetic framework, such as preconditioning and stochastic convergence
analysis, is an important research direction. The interplay between sparse approximation
and these other components can lead to the development of efficient and robust numerical
methods for stochastic partial differential equations.

5. Fluid–Structure Interaction Analysis of Aircraft Wings

FSI analysis plays a crucial role in the design and performance evaluation of aircraft
wings. The complex interplay between fluid dynamics and structural mechanics under
various flight conditions necessitates accurate and reliable numerical methods. However,
uncertainties in fluid properties, structural parameters, and operating conditions pose
significant challenges in FSI analysis. This section presents the application of the stochastic
mimetic framework to address these challenges and enable robust and reliable FSI analysis
of aircraft wings.

The FSI analysis of aircraft wings involves two primary sets of governing equations:
the NAVIER–STOKES equations for compressible flow, which describe the fluid dynamics,
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and the elastodynamic equations, which govern the structural deformation of the wing.
The NAVIER–STOKES equations capture the conservation of mass, momentum, and energy
in the fluid domain, while the elastodynamic equations account for the elastic behavior of
the wing structure.

The stochastic mimetic framework can be employed to discretize the governing equa-
tions and incorporate uncertainties in the FSI analysis. In the fluid domain, a mimetic
finite-difference discretization is applied to the NAVIER–STOKES equations. Random
perturbations are introduced to account for uncertainties in fluid properties, such as density
and viscosity. These perturbations allow for the propagation of uncertainties through the
fluid dynamics simulation.

Similarly, in the structural domain, a mimetic finite element discretization is used for
the elastodynamic equations. Random perturbations are incorporated to represent uncer-
tainties in structural properties, such as Young’s modulus and density. These perturbations
enable the consideration of variability in the wing’s material properties and their impact
on the structural response.

The coupling conditions at the fluid–structure interface are also discretized using
mimetic operators. Random perturbations are introduced to account for uncertainties in
the coupling parameters, such as the interface displacement and traction forces. This allows
for the propagation of uncertainties across the fluid–structure interface and captures the
sensitivity of the coupled system to interface conditions.

The stochastic mimetic framework enables various stochastic analysis techniques to
assess the impact of uncertainties on the FSI behavior of aircraft wings. Eigenvalue analysis
is performed on the coupled stochastic mimetic operator to investigate the stability and
conditioning of the coupled system. The distribution of eigenvalues provides insights into
the sensitivity of the system to perturbations and helps identify potential instabilities.

Localization analysis of eigenfunctions is conducted to identify regions of the fluid and
structural domains that exhibit high sensitivity to random perturbations. This information
is valuable for understanding the spatial distribution of uncertainties and their impact on
the local behavior of the FSI system.

Sparse approximation techniques, such as randomized SVD, can be employed to obtain
compact representations of the coupled stochastic mimetic operator. These approximations
reduce the computational complexity and memory requirements while preserving the
essential stochastic characteristics of the system.

The stochastic mimetic framework can be implemented using Python and libraries
such as NumPy, SciPy, and FEniCS (for finite element discretization). FSI simulations
of aircraft wings are performed under different flight conditions and random perturba-
tions. To leverage the potential of exascale computing for large-scale simulations, it could
also be integrated with advanced computational platforms such as Alya, a multiphysics
engineering simulation tool designed for exascale performance [18].

Uncertainty quantification techniques, such as Monte Carlo simulations or stochastic
collocation methods, can be employed to propagate uncertainties through the FSI system.
These methods allow for the computation of statistical quantities of interest, such as
mean, variance, and probability distributions of output quantities like lift, drag, and wing
tip displacement. The statistical analysis enables the assessment of the robustness and
reliability of the aircraft wing design under uncertain operating conditions.

The stochastic mimetic framework can be integrated with optimization algorithms
to perform robust design optimization of aircraft wings. The optimization objective is
to seek optimal wing shapes and structural parameters that minimize performance vari-
ability and ensure safety under uncertain conditions. The stochastic mimetic approach
enables the consideration of uncertainties directly within the optimization process, leading
to designs that are resilient to variations in fluid properties, structural parameters, and
operating conditions.

The application of the stochastic mimetic framework to FSI analysis of aircraft wings
offers a powerful approach to address uncertainties and enable robust and reliable design.
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By incorporating random perturbations in the fluid dynamics, structural mechanics, and
coupling conditions, the framework captures the propagation of uncertainties through the
FSI system. The stochastic analysis techniques, such as eigenvalue analysis, localization
of eigenfunctions, and sparse approximation, provide valuable insights into the stability,
sensitivity, and computational efficiency of the coupled system. Numerical simulations
and uncertainty quantification allow for the assessment of the wing’s performance and reli-
ability under uncertain conditions. Furthermore, the integration of the stochastic mimetic
framework with optimization algorithms enables robust design optimization, leading to
aircraft wings that are resilient to uncertainties. The proposed approach has the potential
to significantly enhance the design and analysis of aircraft wings, enabling safer and more
reliable aircraft operations in the presence of uncertainties.

Assumptions

The development and application of the stochastic mimetic framework for FSI analysis
of aircraft wings are predicated on several key assumptions that delineate the scope,
limitations, and direction of our research:

Stochastic properties of material and fluid parameters: We assume that uncertainties in
material properties (such as Young’s modulus and density) and fluid dynamics parameters
(such as viscosity and density) can be effectively modeled using random variables. These
variables are typically assumed to follow specific probability distributions (e.g., normal
distribution), which are chosen based on empirical data or expert judgment.
Linearity of the perturbation effects: Our analysis largely assumes that the effects of
stochastic perturbations on the system’s responses are linear or can be linearized. This
assumption simplifies the mathematical treatment and computational modeling but may
not capture nonlinear interactions in more complex scenarios.
Independence of random variables: It is often assumed that the random variables representing
different uncertain parameters are statistically independent. This assumption simplifies the
stochastic analysis but may not hold in cases where there is a known correlation between
parameters, such as between material properties that change with environmental conditions.
Mimetic discretization: The framework assumes that the mimetic finite-difference methods
accurately preserve the geometric and differential properties of the physical systems they
model, while these methods are designed to maintain conservation properties and mimic
the continuum behavior closely, discrepancies can still arise, especially in highly irregular
or complex geometries.
Stability and convergence: The theoretical analysis of stability and convergence of the
stochastic mimetic methods relies on assumptions about the suitability of the mesh size and
the time-step in numerical simulations. These assumptions are critical for ensuring that the
numerical solutions converge to the true continuum solutions as the mesh is refined.
Computational resources: The development and application of the stochastic mimetic
framework are contingent on the availability of substantial computational resources. This is
particularly relevant when handling large-scale simulations involving high-fidelity models
with numerous stochastic parameters.
Random matrix theory: The application of random matrix theory to describe the behavior
of stochastic perturbations assumes that the matrix entries meet the conditions required for
the application of results like the WIGNER semicircle law or the MARCHENKO–PASTUR
law. These conditions may not be fully satisfied in practical computational settings.

These assumptions define the theoretical and practical boundaries within which our
research operates. They are essential for interpreting the results and understanding the
potential limitations of the proposed framework. Future work could focus on relaxing
some of these assumptions, for example, by incorporating nonlinear effects, considering
correlated uncertainties, or developing more advanced numerical methods that reduce the
dependency on extensive computational resources.
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6. Evaluation of Stochastic Mimetic Operators

In this section, we evaluate the stochastic mimetic operators for different values of the
perturbation strength, γ. The evaluation focuses on the eigenvalue distribution, localization
of eigenfunctions, and the accuracy of sparse approximation using randomized singular
value decomposition (SVD).

6.1. Eigenvalue Distribution and Localization of Eigenfunctions

The eigenvalue distribution and localization of eigenfunctions are analyzed for differ-
ent values of γ. Figures 2 and 3 show the results for γ = 0.1 as an example.

Figure 2. Eigenvalue distribution for γ = 0.1.

Figure 3. Localization of eigenfunctions (inverse participation ratio) for γ = 0.1.

The sparse approximation error is computed using randomized SVD for different
values of γ. The results indicate that the approximation error remains relatively stable
across different values of γ, with a value of approximately 0.9004 for γ = 0.1.

Table 1 presents a summary of the statistics for the eigenvalue distribution, localization
of eigenfunctions, and approximation error for different values of γ.
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Table 1. Summary statistics for different values of γ.

γ
Min

Eigenvalue
Max

Eigenvalue
Mean

Eigenvalue
Std Dev

Eigenvalue Mean IPR Max IPR Approx Error

0.01 −0.2458 4.2513 1.9998 1.4492 0.0029 0.0048 0.9002
0.10 −4.7895 8.8878 2.0015 3.4637 0.0030 0.0037 0.9003
0.50 −29.5431 33.4538 1.9968 15.8916 0.0030 0.0036 0.9006

The table shows that, as γ increases, the range of eigenvalues expands, indicating a
wider spread in the eigenvalue distribution. The mean inverse participation ratio (IPR)
remains relatively constant, suggesting that the overall localization of eigenfunctions does
not change significantly with γ. The approximation error is also stable across different
values of γ, indicating that the RSVD method provides a consistent level of accuracy in
approximating the stochastic mimetic operator.

The evaluation of stochastic mimetic operators demonstrates their robustness in han-
dling uncertainties characterized by different values of γ. The eigenvalue distribution
and localization of eigenfunctions provide insights into the stability and sensitivity of
the system. The consistent approximation error achieved by RSVD highlights the effec-
tiveness of sparse approximation techniques in reducing computational complexity while
maintaining accuracy.

6.2. Statistical Analysis of Beam Displacement under Stochastic Fluid Force

In this experiment, we perform a statistical analysis of the displacement of a beam
under the influence of a stochastic fluid force. The beam is modeled as a one-dimensional
elastic structure with a length of 10 m, a cross-sectional area of 0.01 square meters, and a
material density of 2700 kg/m3. The Young’s modulus of the beam material is set to 70 GPa.
Uncertainties in the material properties and the fluid force are introduced through random
perturbations with a magnitude of 10% of the original values.

The stochastic fluid force is simplified to a uniform load with a mean value of 1000 N
and a standard deviation of 100 N. The beam is discretized into 100 elements, and the
structural response is solved using the finite element method. The variational problem is
defined with stochastic expressions for the density and Young’s modulus, and the fluid
force is applied as a body load.

Monte Carlo simulations are performed to quantify the uncertainty in the displacement
of the beam. A total of 100 simulations are conducted, each with a different realization
of the stochastic properties and fluid force. The displacement of the beam is recorded for
each simulation, and statistical measures such as the mean, standard deviation, variance,
median, and interquartile range are computed.

The results of the statistical analysis are presented in Figure 4. The mean displacement
shows the average response of the beam to the stochastic fluid force, while the standard
deviation and interquartile range provide information about the variability of the displace-
ment. The median displacement is also plotted to compare with the mean, indicating the
central tendency of the displacement distribution.

The analysis demonstrates the capability of the stochastic mimetic framework to
capture the uncertainty in the structural response of the beam due to variations in material
properties and fluid force. This approach can be extended to more complex FSI problems,
such as the analysis of aircraft wings under uncertain operating conditions.
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Figure 4. Statistical analysis of beam displacement under stochastic fluid force. The mean displace-
ment is shown with the standard deviation and interquartile range represented as shaded areas. The
median displacement is also plotted for comparison.

6.3. Stochastic Analysis of an Aircraft Wing

In this experiment, we extend the stochastic analysis to a more realistic model of an
aircraft wing. The wing is modeled as a rectangular beam with a span of 10 m and a chord
length of 1 m. The structural domain is discretized using a mesh with 50 elements along the
span and 10 elements along the chord. The material properties of the wing, such as density
and Young’s modulus, are subject to stochastic perturbations to account for uncertainties in
the structural parameters.

The aerodynamic lift force acting on the wing is also modeled as a stochastic load,
varying linearly along the span of the wing. The lift force is expressed as 1000 · x[0]/length+
perturb_lift · rand, where x[0] is the spanwise coordinate, length is the span of the wing,
perturb_lift is the uncertainty in the lift force, and rand is a random variable representing
the stochastic perturbation.

The structural response of the wing under the stochastic aerodynamic lift is solved
using the finite element method in FEniCS. The displacement of the wing is computed
and visualized in 3D in Figure 5 to illustrate the deformation of the wing under the
stochastic load.

Figure 5. Displacement of an aircraft wing under stochastic aerodynamic lift.

To quantify the uncertainty in the structural response, Monte Carlo simulations are
performed. A total of 100 simulations are conducted, with each simulation using a new set
of random values for the stochastic properties. The mean and standard deviation of the



Mathematics 2024, 12, 1217 23 of 28

displacement are computed across all simulations to provide statistical measures of the
wing’s displacement, as shown in Figure 6.

The results of the Monte Carlo simulations provide valuable insights into the vari-
ability of the wing’s structural response due to uncertainties in material properties and
aerodynamic loads. This stochastic analysis is crucial for designing aircraft wings that are
robust and reliable under uncertain operating conditions.

In addition to the uncertainties in material properties and aerodynamic loads, we
further enhance the stochastic analysis by introducing randomness in the mimetic operator,
which represents the discretization process in the finite element method. This approach
captures the variability in the numerical representation of the physical domain, providing
a more comprehensive understanding of the uncertainties in the structural response of
the wing.

Figure 6. Statistical analysis of the displacement of an aircraft wing under stochastic aerodynamic lift.
(left) Mean displacement. (right) Standard deviation of displacement.

The randomized mimetic operator is implemented by adding a random perturbation term
to the stiffness matrix in the variational problem, expressed as (young_modulus_stochastic
×thickness + perturb_operator × random_normal()) × dot(grad(u), grad(v)) × dx. This
term introduces variability in the discretization process, allowing us to investigate the
sensitivity of the structural response to changes in the numerical representation of the wing.

The inclusion of randomness in the mimetic operator leads to a greater variability in
the displacement results across different simulations. The standard deviation of the dis-
placement provides a measure of this variability, indicating the sensitivity of the structural
response to the discretization process. The Monte Carlo simulations with the randomized
mimetic operator yield a distribution of displacement results that account for uncertain-
ties in both the physical properties of the wing and the numerical representation of the
structural domain.

By incorporating randomness in the mimetic operator, we gain insights into the
robustness of the aircraft wing design under a wider range of uncertainties. This approach
provides a more comprehensive assessment of the wing’s performance and reliability,
ensuring that the design is resilient to variations in both physical properties and numerical
discretization. The results highlight the importance of considering uncertainties in the
discretization process in addition to material properties and external loads for a more
accurate and reliable analysis of aircraft wings.
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6.4. Analysis

We developed a stochastic operator through the addition of a random perturbation
matrix to a deterministic mimetic Laplacian. This approach facilitates the exploration
of uncertainty effects on eigenvalue distributions and the localization of eigenfunctions,
which are crucial for understanding the stability and robustness of FSI simulations under
uncertain conditions.

The experiments employed a matrix size of n = 1000 with various levels of stochastic
perturbation (γ), assessing eigenvalue distribution, localization via the IPR, and efficiency
of RSVD for matrix approximation.

The most important takeaways of this are as follows:

1. Eigenvalue distribution and stability: Our stochastic framework allows for the visual-
ization and analysis of eigenvalue distributions, providing insights into the stability
of the system under different perturbation strengths.

2. IPR analysis: We quantified the localization of eigenfunctions, a factor critical in un-
derstanding the energy concentration and potential weak spots in structural behavior
under stochastic influences.

3. Computational efficiency: By implementing RSVD, we demonstrated that our frame-
work achieves significant computational efficiency, reducing the computational over-
head associated with large-scale eigenvalue problems in stochastic settings.

The main differentiating features of our methodology include the following:

• Enhanced computational efficiency: Unlike traditional FSI simulations that scale
poorly with increased stochastic dimensions, our method maintains computational
feasibility through efficient matrix approximation techniques.

• Robustness in uncertainty quantification: Our approach provides a more detailed
and robust quantification of uncertainty impacts on system behavior, surpassing
traditional methods that often neglect or oversimplify these aspects.

Experimental Methodology

We introduced a stochastic component to the standard mimetic Laplacian matrix,
which is conventionally deterministic. This was performed to model the uncertainty
inherent in practical applications. The stochastic operator Lstochastic is generated as follows:

Lstochastic = L + γR,

where L is the deterministic mimetic Laplacian, R represents a matrix of random pertur-
bations drawn from a standard normal distribution, and γ is the perturbation strength
parameter. This experiment was conducted using a matrix size of n = 1000 and γ = 0.1.

The eigenvalues of Lstochastic were computed to assess the impact of stochasticity on
the spectral properties of the system. The distribution of eigenvalues gives insight into the
stability and dynamical behavior of the system under stochastic influences.

The IPR was calculated to investigate the localization properties of the eigenfunctions,
which are indicative of how eigenmodes are affected by the random perturbations. The
IPR for each eigenfunction is defined as:

IPR(o) =
∑n

k=1 |ψo(k)|4

(∑n
k=1 |ψo(k)|2)2 ,

where ψo(k) denotes the k-th component of the o-th normalized eigenfunction.
To further analyze the stochastic operator, we utilized RSVD for matrix approximation,

which is crucial for dimensionality reduction in high-dimensional data analysis. The
approximation quality was evaluated using the relative FROBENIUS norm of the error.

The eigenvalue analysis highlighted an increase in the spectral radius due to stochastic
perturbations, suggesting a higher system reactivity to inputs. The IPR results indicated



Mathematics 2024, 12, 1217 25 of 28

increased localization of modes, primarily at the edges of the spectrum. The RSVD demon-
strated an effective low-rank approximation with a relative error quantified by:

Error =
∥Lstochastic − Lapprox∥F

∥Lstochastic∥F
, (26)

where Lapprox is the low-rank approximation of Lstochastic.
We performed a Monte Carlo simulation to study the variability of the eigenvalues and

IPR across different realizations of the stochastic operator. This provided a robust statistical
framework to understand the effects of random perturbations on the system dynamics.

The experimental results confirm that the stochastic perturbations significantly affect
both the spectral properties and the spatial localization of the system. This study lays
the groundwork for further investigations into the robust control and stability analysis of
stochastic dynamical systems.

7. Discussion

The development and application of the stochastic mimetic framework for FSI analysis
of aircraft wings have yielded promising results, demonstrating its potential to enhance the
reliability and robustness of aircraft designs under uncertain conditions. In this section, we
discuss the key findings, implications, and future directions arising from this study.

7.1. Key Findings

1. Spectral analysis: The investigation of the eigenvalue behavior of the mimetic Lapla-
cian operator under stochastic perturbations has provided valuable insights into the
stability of the coupled fluid–structure system. The preservation of key mathemat-
ical properties by mimetic operators, even in a stochastic setting, underscores their
suitability for FSI analysis.

2. Localization of eigenfunctions: The analysis of eigenfunction localization has revealed
the sensitivity of the system to random perturbations. Understanding the spatial distri-
bution of uncertainties through localization properties is crucial for identifying regions
of the wing that are most susceptible to variations in fluid and structural parameters.

3. Sparse approximation: The application of random matrix techniques for sparse
approximation of the stochastic mimetic operator has demonstrated the potential
for computational efficiency gains. This approach enables the handling of large-
scale problems by reducing the dimensionality of the operator while retaining its
essential characteristics.

The findings of this study have significant implications for the design and analysis of
aircraft wings:

1. Robust design: The stochastic mimetic framework allows for the direct integration
of uncertainties into the design process, leading to more robust and reliable wing
designs that can withstand a wide range of operating conditions.

2. Uncertainty quantification: The framework provides a systematic approach for quanti-
fying uncertainties in FSI analysis, enabling the assessment of the impact of variability
in material properties, fluid dynamics, and structural behavior on the overall perfor-
mance of the wing.

3. Computational efficiency: The use of sparse approximation techniques enhances
the computational efficiency of simulations, making it feasible to perform extensive
uncertainty analyses and optimizations within reasonable time frames.

Several avenues for future research emerge from this study:

1. Extension to other applications: The stochastic mimetic framework can be extended to
other FSI problems beyond aircraft wings, such as wind turbine blades, marine structures,
and bio-inspired systems, where uncertainties play a crucial role in their performance.
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2. Integration with machine learning: Machine learning techniques can be combined
with the stochastic mimetic framework to develop data-driven models for predicting
the behavior of fluid–structure systems under uncertainty, further enhancing the
efficiency and accuracy of simulations.

3. Advanced preconditioning strategies: The development of more sophisticated pre-
conditioning methods tailored for the stochastic mimetic operator can improve the
convergence of iterative solvers, especially for highly ill-conditioned systems.

4. Experimental validation: Experimental studies can be conducted to validate the
predictions of the stochastic mimetic framework, providing a benchmark for its
accuracy and reliability in real-world applications.

7.2. Novelty and Significance of the Stochastic Mimetic Framework

The proposed stochastic mimetic framework represents a significant advancement
in the field of computational fluid dynamics and structural mechanics, particularly in the
context of FSI analysis for aerospace applications. This subsection highlights the novel
aspects of this research and delineates how it extends beyond existing methods documented
in the literature.

• Integration of stochastic analysis with mimetic discretization methods:

Novelty: The primary novelty of this research lies in its integration of stochas-
tic elements directly into mimetic discretization methods, while mimetic meth-
ods are well regarded for their ability to preserve the geometric and physical
properties of differential operators, their combination with stochastic analy-
sis to handle uncertainties in material properties and operational conditions is
largely unexplored.
Beyond the literature: Traditional approaches in FSI typically involve determin-
istic simulations that may not adequately account for the inherent uncertainties
present in real-world scenarios. Previous research has focused separately on en-
hancing the accuracy of deterministic mimetic methods or on applying stochastic
methods to conventional finite element or finite volume frameworks. This re-
search bridges this gap by embedding stochastic perturbations within the mimetic
framework, providing a more robust and realistic modeling approach.

• Robustness and safety in aerospace design:

Significance: The framework significantly enhances the robustness and safety
of designs by enabling the simulation of FSI under a variety of uncertain oper-
ational conditions. This is crucial for the aerospace industry where safety and
performance are paramount.
Beyond the literature: Previous efforts often required extensive safety margins to
accommodate uncertainties, leading to potentially overly conservative designs.
The stochastic mimetic framework allows for more nuanced, tailored safety
margins based on probabilistic analyses, leading to optimal material use and
weight reductions without compromising safety.

• Advanced uncertainty quantification (UQ) techniques:

Novelty: The application of advanced UQ techniques in the context of mimetic
discretization is novel, particularly the use of stochastic GALERKIN methods and
polynomial chaos expansions adapted to the mimetic framework.
Beyond the literature: While UQ techniques are well-established in computa-
tional science, their application in mimetic methods is not widely documented.
This research not only adapts these techniques to the mimetic framework but
also tailors them to the specific challenges and structures of FSI problems in
aerospace engineering.
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• Computational efficiency and large-scale applications:

Significance: The framework addresses computational efficiency through the devel-
opment of novel sparse approximation techniques and preconditioning strategies
specifically designed for stochastic systems characterized by high variability.
Beyond the literature: Existing studies have often struggled with the computa-
tional cost associated with stochastic simulations, especially in high dimensions
typical of FSI problems. The proposed sparse techniques and preconditioners are
designed to effectively handle these large-scale systems, making the simulations
more feasible and faster.

In conclusion, the stochastic mimetic framework provides a substantial leap forward
in the simulation of fluid–structure interactions under uncertainty. It pushes the boundaries
of current computational capabilities in aerospace engineering, offering a methodologically
rich, robust, and efficient tool for tackling the complex challenges of designing the next
generation of aerospace structures.

8. Conclusions

In this study, we have presented a stochastic mimetic framework for the fluid–structure
interaction (FSI) analysis of aircraft wings, aimed at addressing the challenges posed
by uncertainties in operating conditions, material properties, and fluid dynamics. The
framework leverages the spectral properties of mimetic finite-difference operators and
integrates stochastic analysis techniques to provide a comprehensive tool for uncertainty
quantification and robust design optimization.

Our findings demonstrate the potential of the stochastic mimetic approach in en-
hancing the reliability and robustness of aircraft wing designs. The spectral and local-
ization analysis of the stochastic mimetic operator offers insights into the stability and
sensitivity of the coupled system, while sparse approximation techniques contribute to
computational efficiency.

Future research directions include extending the framework to other FSI applications,
integrating machine learning for data-driven modeling, developing advanced precondition-
ing strategies, and conducting experimental validation. The stochastic mimetic framework
holds promise for advancing aerospace engineering and other fields where uncertainty
plays a critical role in the design and analysis of complex systems.

Overall, this study contributes to the development of rigorous and scalable numerical
methods for FSI analysis, paving the way for safer and more efficient aircraft in the presence
of uncertainties.
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The following abbreviations are used in this manuscript:

fluid–structure interaction FSI
machine learning ML
inverse participation ratio IPR
interpolative decomposition ID
singular value decomposition SVD
orthogonal matching pursuit OMP
conjugate gradient CG
generalized minimal residual GMRES
uncertainty quantification UQ
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