• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integration

Thumbnail
Ver/
IIT-24-309R (919.3Kb)
IIT-24-309R_preview (3.028Kb)
Fecha
2024-11-01
Autor
Rojo Yepes, Miguel Ángel
Zuluaga Ríos, Carlos David
Saldarriaga Zuluaga, Sergio Danilo
López-Lezama, Jesús M.
Muñoz Galeano, Nicolás
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This paper presents a novel grid-to-vehicle modeling framework that leverages probabilistic methods and neural networks to accurately forecast electric vehicle (EV) charging demand and overall energy consumption. The proposed methodology, tailored to the specific context of Medellin, Colombia, provides valuable insights for optimizing charging infrastructure and grid operations. Based on collected local data, mathematical models are developed and coded to accurately reflect the characteristics of EV charging. Through a rigorous analysis of criteria, indices, and mathematical relationships, the most suitable model for the city is selected. By combining probabilistic modeling with neural networks, this study offers a comprehensive approach to predicting future energy demand as EV penetration increases. The EV charging model effectively captures the charging behavior of various EV types, while the neural network accurately forecasts energy demand. The findings can inform decision-making regarding charging infrastructure planning, investment strategies, and policy development to support the sustainable integration of electric vehicles into the power grid.
 
URI
https:doi.org10.3390wevj15110493
http://hdl.handle.net/11531/100629
A novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integration
Tipo de Actividad
Artículos en revistas
ISSN
2032-6653
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

electric vehicle charging; forecasting; neural networks; probabilistic approach
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias