• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sim-to-real transfer via a Style-Identified Cycle Consistent Generative Adversarial Network: Zero-shot deployment on robotic manipulators through visual domain adaptation

Thumbnail
View/Open
IIT-25-219R_preview (3.952Kb)
Date
2025-11-01
Author
Güitta López, Lucía
Boal Martín-Larrauri, Jaime
López López, Álvaro Jesús
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
The sample efficiency challenge in Deep Reinforcement Learning (DRL) compromises its industrial adoption due to the high cost and time demands of real-world training. Virtual environments offer a cost-effective alternative for training DRL agents, but the transfer of learned policies to real setups is hindered by the sim-to-real gap. Achieving zero-shot transfer, where agents perform directly in real environments without additional tuning, is particularly desirable for its efficiency and practical value. This work proposes a novel domain adaptation approach relying on a Style-Identified Cycle Consistent Generative Adversarial Network (StyleID-CycleGAN or SICGAN), an original Cycle Consistent Generative Adversarial Network (CycleGAN) based model. SICGAN translates raw virtual observations into real-synthetic images, creating a hybrid domain for training DRL agents that combines virtual dynamics with real-like visual inputs. Following virtual training, the agent can be directly deployed, bypassing the need for real-world training. The pipeline is validated with two distinct industrial robots in the approaching phase of a pick-and-place operation. In virtual environments agents achieve success rates of 90 to 100, and real-world deployment confirms robust zero-shot transfer (i.e., without additional training in the physical environment) with accuracies above 95 for most workspace regions. We use augmented reality targets to improve the evaluation process efficiency, and experimentally demonstrate that the agent successfully generalizes to real objects of varying colors and shapes, including LEGO® cubes and a mug. These results establish the proposed pipeline as an efficient, scalable solution to the sim-to-real problem.
 
URI
https:doi.org10.1016j.engappai.2025.111510
http://hdl.handle.net/11531/101245
Sim-to-real transfer via a Style-Identified Cycle Consistent Generative Adversarial Network: Zero-shot deployment on robotic manipulators through visual domain adaptation
Tipo de Actividad
Artículos en revistas
ISSN
0952-1976
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Transfer learning; Deep reinforcement learning; Domain adaptation; Sim-to-real; Zero-shot
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback