• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

FairRAG: A Privacy-Preserving Framework for Fair Financial Decision-Making

Thumbnail
Ver/
IIT-25-247R (1.331Mb)
IIT-25-247R_preview (3.002Kb)
Fecha
2025-08-01
Autor
Palacios Hielscher, Rafael
Gupta, Amar
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Customer churn prediction has become crucial for businesses, yet it poses significant challenges regarding privacy preservation and prediction accuracy. In this paper, we address two fundamental questions: (1) How can customer churn be effectively predicted while ensuring robust privacy protection of sensitive data? (2) How can large language models enhance churn prediction accuracy while maintaining data privacy? To address these questions, we propose FairRAG, a robust architecture that combines differential privacy, retrieval-augmented generation, and LLMs. Our approach leverages OPT-125M as the core language model along with a sentence transformer for semantic similarity matching while incorporating differential privacy mechanisms to generate synthetic training data. We evaluate FairRAG on two diverse datasets: Bank Churn and Telco Churn. The results demonstrate significant improvements over both traditional machine learning approaches and standalone LLMs, achieving accuracy improvements of up to 11 on the Bank Churn dataset and 12 on the Telco Churn dataset. These improvements were maintained when using differentially private synthetic data, thus indicating robust privacy and accuracy trade-offs.
 
URI
https:doi.org10.3390app15158282
http://hdl.handle.net/11531/103114
FairRAG: A Privacy-Preserving Framework for Fair Financial Decision-Making
Tipo de Actividad
Artículos en revistas
ISSN
2076-3417
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

algorithmic fairness; privacy-preserving machine learning; differential privacy; retrieval-augmented generation
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias