Foundation Models for Cybersecurity: A Comprehensive Multi-Modal Evaluation of TabPFN and TabICL for Tabular Intrusion Detection
Fecha
2025-09-24Autor
Estado
info:eu-repo/semantics/publishedVersionMetadatos
Mostrar el registro completo del ítemResumen
Este estudio presenta una evaluación exhaustiva de modelos fundacionales aplicados a la detección de intrusiones en datos tabulares, comparando TabPFN, TabICL y modelos de lenguaje con métodos tradicionales como Random Forest y TabNet. Utilizando tres conjuntos de datos de ciberseguridad (CIC-IDS2017, N-BaIoT y CIC-UNSW), se demuestra que los modelos fundacionales superan a los enfoques clásicos, especialmente en la detección de clases minoritarias como Heartbleed e Infiltration. TabICL alcanza una precisión del 99.59% sin necesidad de ajuste de hiperparámetros ni reentrenamiento, lo que representa un cambio de paradigma hacia arquitecturas adaptativas y ligeras. El estudio propone una arquitectura de detección en tres niveles para centros de operaciones de seguridad, combinando eficiencia computacional con cobertura integral de amenazas. Se concluye que los modelos fundacionales ofrecen ventajas significativas para sistemas de ciberseguridad de próxima generación. While traditional ensemble methods have dominated tabular intrusion detection systems
(IDSs), recent advances in foundation models present new opportunities for enhanced
cybersecurity applications. This paper presents a comprehensive multi-modal evaluation
of foundation models—specifically TabPFN (Tabular Prior-Data Fitted Network), TabICL
(Tabular In-Context Learning), and large language models—against traditional machine
learning approaches across three cybersecurity datasets: CIC-IDS2017, N-BaIoT, and CIC-
UNSW. Our rigorous experimental framework addresses critical methodological challenges
through model-appropriate evaluation protocols and comprehensive assessment across
multiple data variants. Results demonstrate that foundation models achieve superior
and more consistent performance compared with traditional approaches, with TabPFN
and TabICL establishing new state-of-the-art results across all datasets. Most significantly,
these models uniquely achieve non-zero recall across all classes, including rare threats like
Heartbleed and Infiltration, while traditional ensemble methods—despite achieving >99%
overall accuracy—completely fail on several minority classes. TabICL demonstrates partic-
ularly strong performance on CIC-IDS2017 (99.59% accuracy), while TabPFN maintains
consistent performance across all datasets, suggesting robust generalization capabilities.
Both foundation models achieve these results using only fractions of the available train-
ing data and requiring no hyperparameter tuning, representing a paradigm shift toward
training-light, hyperparameter-free adaptive IDS architectures, where TabPFN requires no
task-specific fitting and TabICL leverages efficient in-context adaptation without retraining.
Cross-dataset validation reveals that foundation models maintain performance advantages
across diverse threat landscapes, while traditional methods exhibit significant dataset-
specific variations. These findings challenge the cybersecurity community’s reliance on
tree-based ensembles and demonstrate that foundation models offer superior capabilities
for next-generation intrusion detection systems in IoT environments
Foundation Models for Cybersecurity: A Comprehensive Multi-Modal Evaluation of TabPFN and TabICL for Tabular Intrusion Detection
Tipo de Actividad
Artículos en revistasISSN
2079-9292Palabras Clave
foundation models; tabular transformers; TabPFN; TabICL; in-context learning; intrusion detection systems; IoT security; cybersecurity; multi-modal evaluation; zero-day threatsmodelos fundacionales, detección de intrusos, TabPFN, TabICL, ciberseguridad, IoT, aprendizaje en contexto


