• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Wind Power Forecasting in the Spanish Market Through Transformer Neural Networks and Temporal Optimization

Thumbnail
View/Open
IIT-25-308R (2.178Mb)
IIT-25-308R_preview (3.662Kb)
Date
2025-10-01
Author
Cifuentes Quintero, Jenny Alexandra
Marulanda García, Geovanny Alberto
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
The increasing penetration of renewable energy, and wind power in particular, requires accurate short-term forecasting to ensure grid stability, reduce operational uncertainty, and facilitate large-scale integration of intermittent resources. This study evaluates Transformer-based architectures for wind power forecasting using hourly generation data from Spain (2020–2024). Time series were segmented into input windows of 12, 24, and 36 h, and multiple model configurations were systematically tested. For benchmarking, LSTM and GRU models were trained under identical protocols. The results show that the Transformer consistently outperformed recurrent baselines across all horizons. The best configuration, using a 36 h input sequence with moderate dimensionality and shallow depth, achieved an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92, reducing error by a significant margin compared to LSTM and GRU models, whose best performances reached RMSEs above 395 MW and MAPEs above 5.7. Beyond predictive accuracy, attention maps revealed that the Transformer effectively captured short-term fluctuations while also attending to longer-range dependencies, offering a transparent mechanism for interpreting the contribution of historical information to forecasts. These findings demonstrate the superior performance of Transformer-based models in short-term wind power forecasting, underscoring their capacity to deliver more accurate and interpretable predictions that support the reliable integration of renewable energy into modern power systems.
 
URI
https:doi.org10.3390su17198655
http://hdl.handle.net/11531/105794
Enhancing Wind Power Forecasting in the Spanish Market Through Transformer Neural Networks and Temporal Optimization
Tipo de Actividad
Artículos en revistas
ISSN
2071-1050
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT) - Innovación docente y Analytics (GIIDA)
Palabras Clave

wind power forecasting; transformer models; deep learning; short-term forecasting; renewable energy integration; sustainable energy systems
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback