• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Collinearity-aware Explainability for Time-series Forecasting: Evidence from Synthetic Benchmarks

Thumbnail
View/Open
IIT-25-346C.pdf (992.2Kb)
Author
Pizarroso Gonzalo, Jaime
Estado
info:eu-repo/semantics/draft
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Post-hoc explainability is routinely used to interpret machine-learning forecasters, yet in the common “lagsto-forecast” setting autocorrelation and cross-correlation induce severe multicollinearity that renders per-lag attributions statistically fragile. We study this phenomenon with controlled synthetic benchmarks where the ground-truth drivers are known, and evaluate three representative model families (Random Forest, LSTM, Transformer-style Informer). We introduce a collinearityaware evaluation protocol that (i) respects temporal dependence via blocked permutation tests and (ii) aligns the unit of explanation with the unit of non-dentifiability through group-wise (lag-block) attributions. Across models, per-lag SHAP rankings are unstable under small refits, whereas grouping markedly improves stability (e.g., Spearman rank correlation rises by up to %2B0.23 for tree models) with consistent gains in Top-k overlap. Ablation experiments show that removing a handful of top-ranked individual lags yields only minor AUROC changes, confirming redundancy among correlated lags; in contrast, dropping an entire lag group corresponding to a true driver produces large performance losses. Blocked permutation further yields more conservative and reliable reliance estimates than i.i.d. permutation and can alter driver rankings under seasonality. Taken together, the results clarify that, under autocorrelation, post-hoc explanations primarily reflect what the model relies on given the observed dependence, not process causality. We provide practical guidance: explain groups rather than isolated lags, respect serial structure in perturbations, and report stability metrics to distinguish robust insights from artefacts of collinearity.
 
URI
http://hdl.handle.net/11531/107170
Collinearity-aware Explainability for Time-series Forecasting: Evidence from Synthetic Benchmarks
Palabras Clave

Explainability, forecasting, correlation, XAI, interpretability
Collections
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback