• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting

Thumbnail
Ver/
IIT-16-051A.pdf (510.7Kb)
Autor
Portela González, José
Muñoz San Roque, Antonio
Alonso Pérez, Estrella
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
Functional time series are the realization of stochastic processes where each observation is a continuous function defined on a finite interval. Forecasting these high dimensional time series requires models that operate with continuous functions. In this paper, a new forecasting method is proposed that attempts to generalize the standard seasonal ARMAX time series model to the L2 Hilbert space in order to forecast functional time series. The structure of the proposed model is a linear regression where functional parameters operate on functional variables. The variables can be lagged values of the series (autoregressive terms), past observed innovations (moving average terms) or exogenous variables. In our approach, the functional parameters used are integral operators in the L2 space and the kernels of the operators are modeled as linear combinations of sigmoid functions. The parameters of each sigmoid are estimated using a Quasi-Newton algorithm for minimizing the sum of squared errors. This novel approach allows estimating the moving average terms in functional time series models. The new model is tested by forecasting the daily price profile of the Spanish electricity market and compared with other functional reference models.
 
URI
http://hdl.handle.net/11531/14211
Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting
Palabras Clave

Functional Data Analysis, Functional time series, Hilbertian ARMAX model, Electricity price forecasting
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias