• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A parameter selection method for wind turbine health management through SCADA data

Thumbnail
Ver/
IIT-17-009A.pdf (2.182Mb)
Autor
Du, Mian
Yi, Jun
Mazidi, Peyman
Cheng, Lin
Guo, Jianbo
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
More and more works are using machine learning techniques while adopting supervisory control and data acquisition (SCADA) system for wind turbine anomaly or failure detection. While parameter selection is important for modelling a wind turbine s health condition, only a few papers have been published focusing on this issue and in those papers interconnections among sub-components in a wind turbine are used to address this problem. However, merely the interconnections for decision making sometimes is too general to provide a parameter list considering the differences of each SCADA dataset. In this paper, a method is proposed to provide more detailed suggestions on parameter selection based on mutual information. Moreover, after proving that Copula, a multivariate probability distribution for which the marginal probability distribution of each variable is uniform is capable of simplifying the estimation of mutual information, an empirical copula based mutual information estimation method (ECMI) is introduced for an application. After that, a real SCADA dataset is adopted to test the method, and the results show the effectiveness of the ECMI in providing parameter selection suggestions when physical knowledge is not accurate enough.
 
URI
http://hdl.handle.net/11531/16203
A parameter selection method for wind turbine health management through SCADA data
Palabras Clave

wind turbine; failure detection; SCADA data; feature extraction; mutual information; copula
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias