• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new approach to fitting the three-parameter Weibull Distribution. An application to glass ceramics

Thumbnail
Ver/
paper-communication in Statistsics.pdf (71.30Kb)
Fecha
16/12/2019
Autor
Caro Carretero, Raquel
Jimenez-Octavio, JR
Carnicero, Alberto
Garrido Contreras, Arturo
Such, Miguel
Estado
info:eu-repo/semantics/publishedVersion
Plumx metric
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
The field of strength reliability is one of the critical factors restricting wider use of brittle materials in certain structural applications, like ceramics. In this area, the Weibull distribution is widely accepted for lifetime modeling. In essence, the brittleness of ceramic materials leads to poor toughness and low strength reliability. The statistical nature of these flaws results in a significant scatter of the measured macroscopic strength outcomes, which has a number of consequences both in the design and verification of components involving such materials. In the present work, an analysis and evaluation of six existing estimation methods for a Weibull distribution are presented, as well as a new approach for fitting the Weibull distribution using Neural Networks
 
The field of strength reliability is one of the critical factors restricting wider use of brittle materials in certain structural applications, like ceramics. In this area, the Weibull distribution is widely accepted for lifetime modeling. In essence, the brittleness of ceramic materials leads to poor toughness and low strength reliability. The statistical nature of these flaws results in a significant scatter of the measured macroscopic strength outcomes, which has a number of consequences both in the design and verification of components involving such materials. In the present work, an analysis and evaluation of six existing estimation methods for a Weibull distribution are presented, as well as a new approach for fitting the Weibull distribution using Neural Networks. The major focus of this work is, however, the implementation of simulations in order to contrast how well the suggested techniques of the Weibull parameter estimation perform. Finally, an important implication of the present study is that it shows how various estimators of the Weibull model work for wide-ranging sample sizes and different parameter values. The simulation results revealed that L-Moment estimator produces more accurate estimates, unlike those using Neural Networks that are more robust with the lowest Root Mean Square Error.
 
URI
http://hdl.handle.net/11531/43809
DOI
10.1080/03610926.2019.1702698
A new approach to fitting the three-parameter Weibull Distribution. An application to glass ceramics
Tipo de Actividad
Artículos en revistas
ISSN
0361-0926
Palabras Clave
Weibull strength distribution; brittle materials; ceramics; parameter estimation, Neural Networks
Weibull strength distribution; brittle materials; ceramics; parameter estimation, Neural Networks
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias