Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary
Fecha
19/01/2020Estado
info:eu-repo/semantics/publishedVersionMetadatos
Mostrar el registro completo del ítemResumen
En este trabajo analizamos el comportamiento de soluciones de ciertas ecuaciones diferenciales elípticas y parabólicas definidas en dominios finos de cualquier dimensión con oscilaciones en la frontera superior e inferior. In this work we consider higher dimensional thin domains with the property that both boundaries, bottom and top, present oscillations of weak type. We consider the Laplace operator with Neumann boundary conditions and analyze the behavior of the solutions as the thin domain shrinks to a fixed domain. We obtain the convergence of the resolvent of the elliptic operators in the sense of compact convergence of operators, which in particular implies the convergence of the spectra. This convergence of the resolvent operators will allow us to conclude the global dynamics, in terms of the global attractors of a reaction diffusion equation in the thin domains. In particular, we show the upper semicontinuity of the attractors and stationary states. An important case treated is the case of a quasiperiodic situation, where the bottom and top oscillations are periodic but with period rationally independent.
Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary
Tipo de Actividad
Artículos en revistasISSN
1534-0392Materias/ categorías / ODS
Dinámica No LinealPalabras Clave
Dominios fino, frontera oscilante, convergencia compacta, atractores, oscilaciones quasiperiódicas.Thin domain, oscillatory boundary, compact convergence, attractors, quasiperiodic oscillations.