• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural network models to detect airplane near-collision situations

Thumbnail
View/Open
IIT-10-018A.pdf (667.8Kb)
Date
2010-04-01
Author
Palacios Hielscher, Rafael
Doshi, Anuja
Gupta, Amar
Orlando, Vince
Midwood, Brent R.
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
The US Federal Aviation Administration (FAA) has been investigating early warning accident prevention systems in an effort to prevent runway collisions. One system in place is the Airport Movement Area Safety System (AMASS), developed under contract for the FAA. AMASS internal logic is based on computing separation distances among airplanes, and it utilizes prediction models to foresee potential accidents. Research described in this paper shows that neural network models have the capability to accurately predict future separation distances and aircraft positions. Accurate prediction algorithms integrated in safety systems such as AMASS can potentially deliver earlier warnings to air traffic controllers, hence reducing the risk of runway accidents even further. Additionally, more accurate predictions will lower the incidence of false alarms, increasing confidence in the detection system. In this paper, different incipient detection approaches are presented, and several prediction techniques are evaluated using data from one large and busy airport. The main conclusion is that no single approach is good for every possible scenario, but the optimal performance is attained by a combination of the techniques presented.
 
URI
https:doi.org10.108003081061003732300
Neural network models to detect airplane near-collision situations
Tipo de Actividad
Artículos en revistas
ISSN
0308-1060
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Airport traffic management; collision avoidance; prediction models; neural networks
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback