Abstract
The aim of this report is to demonstrate and evaluate the potential of tall wheatgrass (Elytrigia elongata) to avoid GHG emissions and obtain lower economic costs in marginal areas of Spain. Our research built scenarios based on experimental plots (2 and 3 years growth) in 3 locations of Spain with completely different climate conditions (provinces of Girona, Soria and Palencia). In our experiences, we achieved an adequate establishment and biomass production, and assumed a rank of biomass yields until the end of the life cycle that is usually accepted to be about 15 years in many other studies in United States, Argentina and Eastern Europe where tall wheatgrass is extensively cultivated in marginal areas for sheep livestock production. Using our experimental plots and statistical information for economic inputs costs, we built 5 different scenarios per region considering a large range of biomass yields of tall wheatgrass. The analysis included a comparison with annual grasses economic costs calculated for a wide range of biomass yields of a previous study. We estimated GHG emissions savings for tall wheatgrasses and used our previous study (which had GHG emissions savings as well). Savings were calculated replacing natural gas electricity with electricity from biomass combustion in real power plants in Spain. In a wide range of yields, the results suggest that marginal areas might present a better performance with tall wheatgrass compared to annual winter grasses (cereals whole plant cuttings), thus producing biomass yields with higher GHG savings and lower economic costs at the farm level.
Perennial energy crops for semiarid lands in the Mediterranean: Elytrigia elongata, a C3 grass with summer dormancy to produce electricity in constraint environments