• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evidence of gender differences in the diagnosis and management of coronavirus disease 2019 patients: an analysis of electronic health records using natural language processing and machine learning

Thumbnail
View/Open
IIT-20-081A.pdf (231.6Kb)
Date
2021-03-04
Author
Ancochea Bermúdez, Julio
Izquierdo Alonso, José L
Hernández Medrano, Ignacio
Porras Chavarino, Alberto
Serrano Olmedo, Marisa
Lumbreras Sancho, Sara
del Río Bermúdez, Carlos
Marchesseau, Stephanie
Salcedo Ramos, Ignacio
Zubizarreta, Imanol
González Fernández, Yolanda
Soriano Ortiz, Joan B.
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Background: The impact of sex and gender in the incidence and severity of COVID-19 remains controversial. Here, we aim to describe the characteristics of COVID-19 patients at disease onset, with special focus on the diagnosis and management of female patients with COVID-19. Methods: We explored the unstructured free text in the electronic health records (EHRs) within the SESCAM Healthcare Network (Castilla La-Mancha, Spain). The study sample comprised the entire population with available EHRs (1,446,452 patients) from January 1st to May 1st, 2020. We extracted patients’ clinical information upon diagnosis, progression, and outcome for all COVID-19 cases. Results: A total of 4,780 patients with a confirmed diagnosis of COVID-19 were identified. Of these, 2,443 (51) were female, who were on average 1.5 years younger than male patients (61.7±19.4 vs. 63.3±18.3, p=0.0025). There were more female COVID-19 cases in the 15-59 year -old interval, with the greatest sex ratio (SR; 95 CI) observed in the 30-39 year-old age range (1.69; 1.35-2.11). Upon diagnosis, headache, anosmia, and ageusia were significantly more frequent in females than males. Imaging by chest X-ray or blood tests were performed less frequently in females (65.5 vs. 78.3 and 49.5 vs. 63.7, respectively), all p
 
URI
https:doi.org10.1089jwh.2020.8721
Evidence of gender differences in the diagnosis and management of coronavirus disease 2019 patients: an analysis of electronic health records using natural language processing and machine learning
Tipo de Actividad
Artículos en revistas
ISSN
1540-9996
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

artificial Intelligence; sex differences; COVID-19; Natural Language Processing; SARS-CoV-2.
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback