• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 1.- Docencia
  • Enfermería y Fisioterapia
  • Grado en Fisioterapia
  • KFS-Guías Docentes
  • View Item
  •   Home
  • 1.- Docencia
  • Enfermería y Fisioterapia
  • Grado en Fisioterapia
  • KFS-Guías Docentes
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-cost electronics for automatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniques

Thumbnail
View/Open
Guía Docente.pdf (174.5Kb)
IIT-23-055R (6.484Mb)
IIT-23-055R_preview (2.876Kb)
Date
2023-04-02
Author
Monteagudo Honrubia, Miguel
Matanza Domingo, Javier
Herraiz Martínez, Francisco Javier
Giannetti, Romano
Director/Coordinador
Martínez Beltrán, María Jesús
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Glycerin is a versatile organic molecule widely used in the pharmaceutical, food, and cosmetic industries, but it also has a central role in biodiesel refining. This research proposes a dielectric resonator (DR) sensor with a small cavity to classify glycerin solutions. A commercial VNA and a novel low-cost portable electronic reader were tested and compared to evaluate the sensor performance. Within a relative permittivity range of 1 to 78.3, measurements of air and nine distinct glycerin concentrations were taken. Both devices achieved excellent accuracy (98–100) using Principal Component Analysis (PCA) and Support Vector Machine (SVM). In addition, permittivity estimation using Support Vector Regressor (SVR) achieved low RMSE values, around 0.6 for the VNA dataset and between 1.2 for the electronic reader. These findings prove that low-cost electronics can match the results of commercial instrumentation using machine learning techniques.
 
URI
https:doi.org10.3390s23083940
Low-cost electronics for automatic classification and permittivity estimation of glycerin solutions using a dielectric resonator sensor and machine learning techniques
Tipo de Actividad
Artículos en revistas
Créditos
6.0
ISSN
1424-8220
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

dielectric resonator; microwave sensor; machine learning; dielectric characterization; glycerin purification; low-cost electronics; arduino
Collections
  • KFS-Guías Docentes

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback