• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
  •   Home
  • 2.- Investigación
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data augmentation through multivariate scenario forecasting in data centers using generative adversarial networks

Thumbnail
View/Open
IIT-22-068R.pdf (3.545Mb)
Date
2023-01-01
Author
Pérez Sánchez, Jaime
Arroba García, Patricia
Moya, José Manuel
Estado
info:eu-repo/semantics/publishedVersion
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
The Cloud paradigm is at a critical point in which the existing energy-efficiency techniques are reaching a plateau, while the computing resources demand at Data Center facilities continues to increase exponentially. The main challenge in achieving a global energy efficiency strategy based on Artificial Intelligence is that we need massive amounts of data to feed the algorithms. This paper proposes a time-series data augmentation methodology based on synthetic scenario forecasting within the Data Center. For this purpose, we will implement a powerful generative algorithm: Generative Adversarial Networks (GANs). Specifically, our work combines the disciplines of GAN-based data augmentation and scenario forecasting, filling the gap in the generation of synthetic data in DCs. Furthermore, we propose a methodology to increase the variability and heterogeneity of the generated data by introducing on-demand anomalies without additional effort or expert knowledge. We also suggest the use of Kullback-Leibler Divergence and Mean Squared Error as new metrics in the validation of synthetic time series generation, as they provide a better overall comparison of multivariate data distributions. We validate our approach using real data collected in an operating Data Center, successfully generating synthetic data helpful for prediction and optimization models. Our research will help optimize the energy consumed in Data Centers, although the proposed methodology can be employed in any similar time-series-like problem.
 
URI
https:doi.org10.1007s10489-022-03557-6
Data augmentation through multivariate scenario forecasting in data centers using generative adversarial networks
Tipo de Actividad
Artículos en revistas
ISSN
0924-669X
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Data Augmentation, Sensor Data, Data Center, Generative Adversarial Networks, Synthetic Data, Scenario Forecasting
Collections
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback