• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving operating policies in stochastic optimization: an application to the medium-term hydrothermal scheduling problem

Thumbnail
Ver/
IIT-24-030R.pdf (2.737Mb)
Fecha
2024-04-01
Autor
Gómez Pérez, Jesús David
Latorre Canteli, Jesús María
Ramos Galán, Andrés
Perea Sánchez, Alejandro
Sanz González, Pablo
Hernández González, Francisco
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
In decision-making under uncertainty, a robust representation of uncertainty is vital for optimal operational and strategic solutions. We extend existing methods by utilizing Fourier decomposition to create multivariate synthetic time series, capturing stochastic seasonal patterns while preserving correlations. These synthetic time series are transformed into a recombining scenario tree via K-means clustering. To enhance the resulting policy in the Stochastic Dual Dynamic Programming (SDDP) framework, we propose an additional sampling within scenario-tree nodes to consider a better representation of the cost-to-go function. A convergence proof for this sampling technique is provided. Moreover, two new stopping criteria are introduced for better solution accuracy and robustness. The first criterion extends traditional stopping rules to all scenario-tree nodes. The second criterion enforces a minimum count of Benders cuts per node, promoting accurate and robust solutions. Our approach is evaluated on the Spanish hydrothermal system, incorporating synthetic time series with seasonal-trend uncertainty in optimization and simulation. Policies from traditional SDDP and our technique were tested over a thousand realizations, demonstrating that our proposals yield reservoir operation policies closer to the thresholds set by the operator compared to traditional SDDP. Computational efficiency is maintained. The proposed sampling mitigates the impact of discretizing stochastic variables into scenario trees by evaluating more scenarios per node. Our framework offers robust policies under uncertainty through stochastic seasonal patterns by Fourier analysis, novel SDDP sampling, and additional stopping criteria.
 
URI
https:doi.org10.1016j.apenergy.2024.122688
Improving operating policies in stochastic optimization: an application to the medium-term hydrothermal scheduling problem
Tipo de Actividad
Artículos en revistas
ISSN
0306-2619
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Time series; Fourier analysis; Optimization methods; Stochastic programming; SDDP; Sampling methods
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias