• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inclusion of frequency nadir constraint in the unit commitment problem of small power systems using machine learning

Thumbnail
Ver/
Inclusion%20of%20frequency%20nadir%20constraint%20in%20the%20unit%20commitment%20problem%20of%20small%20power%20systems%20using%20machine%20learning (1.389Mb)
Fecha
2023-12-01
Autor
Rajabdorri, Mohammad
Kazemtabrizi, Behzad
Troffaes, Matthias
Sigrist, Lukas
Lobato Miguélez, Enrique
Estado
info:eu-repo/semantics/publishedVersion
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
As the intention is to reduce the amount of thermal generation and to increase the share of clean energy, power systems are increasingly becoming susceptible to frequency instability after outages due to reduced levels of inertia. To address this issue frequency constraints are being included in the scheduling process, which ensure a tolerable frequency deviation in case of any contingencies. In this paper, a method is proposed to integrate the non-linear frequency nadir constraint into the unit commitment problem, using machine learning. First, a synthetic training dataset is generated. Then two of the available classic machine learning methods, namely logistic regression and support vector machine, are proposed to predict the frequency nadir. To be able to compare the machine learning methods to traditional frequency constrained unit commitment approaches, simulations on the power system of La Palma island are carried out for both proposed methods as well as an analytical linearized formulation of the frequency nadir. Our results show that the unit commitment problem with a machine learning based frequency nadir constraint is solved considerably faster than with the analytical formulation, while still achieving an acceptable frequency response quality after outages.
 
URI
https:doi.org10.1016j.segan.2023.101161
Inclusion of frequency nadir constraint in the unit commitment problem of small power systems using machine learning
Tipo de Actividad
Artículos en revistas
ISSN
2352-4677
Materias/ categorías / ODS
Instituto de Investigación Tecnológica (IIT)
Palabras Clave

Data-driven method; Mixed integer linear programming; Frequency constrained unit commitment; Machine learning
Colecciones
  • Artículos

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias