• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing mobility patterns of complex chronic patients using wearable activity trackers: a machine learning approach

Thumbnail
Ver/
%20a%20machine%20learning%20approach (1.429Mb)
Autor
Polo Molina, Alejandro
Sánchez Ubeda, Eugenio Francisco
Portela González, José
Palacios Hielscher, Rafael
Rodríguez-Morcillo García, Carlos
Muñoz San Roque, Antonio
Álvarez Romero, Celia
Hernández Quiles, Carlos
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This study suggests using wearable activity trackers to identify mobility patterns in Chronic Complex Patients (CCP) and investigate their relation with the Barthel Index (BI) for assessing functional decline. CCP are individuals who suffer from multiple, chronic health conditions that often lead to a progressive decline in their functional capacity. As a result, CCP frequently require the use of healthcare and social resources, which can place a significant challenge on the healthcare system. Evaluating mobility patterns is critical for determining CCP’s functional capacity and prognosis. In order to monitor the overall activity levels of CCP, wearables activity trackers are proposed. Utilizing the data gathered by the wearables, time series clustering with Dynamic Time Warping (DTW) is employed to generate synchronized mobility patterns of mean activity and coefficient of variation profiles. The research has revealed distinct patterns in individuals’ walking habits, including the time of day they walk, whether they walk continuously or intermittently, and their relation to BI. These findings could significantly enhance CCP’s quality of care by providing a valuable tool for personalizing treatment and care plans.
 
URI
http://hdl.handle.net/11531/87275
Analyzing mobility patterns of complex chronic patients using wearable activity trackers: a machine learning approach
Palabras Clave

Barthel Index · Chronic Complex Patients · Dynamic Time Warping · Functional Decline · Mobility Patterns · Time Series Clustering
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias