Mostrar el registro sencillo del ítem

dc.contributor.authorAbenojar Buendía, Juanaes-ES
dc.contributor.authorBallesteros Iglesias, María Yolandaes-ES
dc.contributor.authorBahrami, Mohsenes-ES
dc.contributor.authorMartínez Casanova, Miguel Ángeles-ES
dc.contributor.authordel Real Romero, Juan Carloses-ES
dc.date.accessioned2024-04-09T02:31:48Z
dc.date.available2024-04-09T02:31:48Z
dc.date.issued2024-04-01es_ES
dc.identifier.issn2073-4360es_ES
dc.identifier.urihttps:doi.org 10.3390polym16070878es_ES
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractCavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (B4C) were incorporated as reinforcement at 6 and 12 ratios, owing to their exceptional resistance to abrasive wear and high hardness. Microparticles were incorporated to assess the damage incurred during the tests in comparison to nanoparticles. Wear tests were conducted on both bulk samples and coated aluminum sheets with a 1mm of composite. Additionally, cavitation tests were performed on coated aluminum tips until stability of mass loss was achieved. The results indicated a distinct wear behavior between the coatings and the bulk samples. Overall, wear tended to be higher for the coated samples with nanocomposites than bulk, except for the nano-composite material containing 12 SiC and pure resin. With the coatings, higher percentages of nanometric particles correlated with increased wear. The coefficient of friction remained within the range of 0.4 to 0.5 for the coatings. Regarding the accumulated erosion in the cavitation tests for 100 min, it was observed that for all nanocomposite materials, it was lower than in pure resin. Particularly, the composite with 6 B4C was slightly lower than the rest. In addition, the erosion rate was also lower for the composites.en-GB
dc.format.mimetypeapplication/octet-streames_ES
dc.language.isoen-GBes_ES
dc.sourceRevista: Polymers, Periodo: 1, Volumen: online, Número: 7, Página inicial: 878-1, Página final: 878-17es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleWear behavior of epoxy resin reinforced with ceramic nano- and microparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordscavitation erosion; wear; nanoparticles; silicon carbide; boron carbide; coating; nanocomposites; epoxy resinen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos de revista, capítulos de libro y contribuciones en congresos publicadas.

Mostrar el registro sencillo del ítem